skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: A New Hydrodynamic Spherical Accretion Exact Solution and Its Quasi-spherical Perturbations
Abstract

We present an exactγ= 5/3 spherical accretion solution that modifies the Bondi boundary condition ofρconstantasr→ ∞ toρ→ 0 asr→ ∞. This change allows for simple power-law solutions on the density and infall velocity fields, ranging from a cold empty freefall condition where pressure tends to zero, to a hot hydrostatic equilibrium limit with no infall velocity. As in the case of the Bondi solution, a maximum accretion rate appears. As in theγ= 5/3 case of the Bondi solution, no sonic radius appears, this time however, because the flow is always characterized by a constant Mach number. This number equals 1 for the case of the maximum accretion rate, diverges toward the cold empty state, and becomes subsonic toward the hydrostatic equilibrium limit. It can be shown that in the limitr→ 0, the Bondi solution tends to the new solution presented, extending the validity of the Bondi accretion value to cases where the accretion density profile does not remain at a fixed constant value out to infinity. We then explore small deviations from sphericity and the presence of angular momentum through an analytic perturbative analysis. Such perturbed solutions yield a rich phenomenology through density and velocity fields in terms of Legendre polynomials, which we begin to explore for simple angular velocity boundary conditions having zeros on the plane and pole. The new solution presented provides complementary physical insight into accretion problems in general.

 
more » « less
Award ID(s):
2110425
NSF-PAR ID:
10472067
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Science - Institute of Physics
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
945
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
76
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We carry out three-dimensional computations of the accretion rate onto an object (of sizeRsinkand massm) as it moves through a uniform medium at a subsonic speedv. The object is treated as a fully absorbing boundary (e.g., a black hole). In contrast to early conjectures, we show that for an accretor withRsinkRA=2Gm/v2in a gaseous medium with adiabatic indexγ= 5/3, the accretion rate is independent of Mach number and is determined only bymand the gas entropy. Our numerical simulations are conducted using two different numerical schemes via the Athena++ and Arepo hydrodynamics solvers, which reach nearly identical steady-state solutions. We find that pressure gradients generated by the isentropic compression of the flow near the accretor are sufficient to suspend much of the surrounding gas in a near-hydrostatic equilibrium, just as predicted from the spherical Bondi–Hoyle calculation. Indeed, the accretion rates for steady flow match the Bondi–Hoyle rate, and are indicative of isentropic flow for subsonic motion where no shocks occur. We also find that the accretion drag may be predicted using the Safronov number, Θ =RA/Rsink, and is much less than the dynamical friction for sufficiently small accretors (RsinkRA).

     
    more » « less
  2. Abstract

    Fueling and feedback couple supermassive black holes (SMBHs) to their host galaxies across many orders of magnitude in spatial and temporal scales, making this problem notoriously challenging to simulate. We use a multi-zone computational method based on the general relativistic magnetohydrodynamic (GRMHD) code KHARMA that allows us to span 7 orders of magnitude in spatial scale, to simulate accretion onto a non-spinning SMBH from an external medium with a Bondi radius ofRB≈ 2 × 105GM/c2, whereMis the SMBH mass. For the classic idealized Bondi problem, spherical gas accretion without magnetic fields, our simulation results agree very well with the general relativistic analytic solution. Meanwhile, when the accreting gas is magnetized, the SMBH magnetosphere becomes saturated with a strong magnetic field. The density profile varies as ∼r−1rather thanr−3/2and the accretion rateṀis consequently suppressed by over 2 orders of magnitude below the Bondi rateṀB. We find continuous energy feedback from the accretion flow to the external medium at a level of102Ṁc25×105ṀBc2. Energy transport across these widely disparate scales occurs via turbulent convection triggered by magnetic field reconnection near the SMBH. Thus, strong magnetic fields that accumulate on horizon scales transform the flow dynamics far from the SMBH and naturally explain observed extremely low accretion rates compared to the Bondi rate, as well as at least part of the energy feedback.

     
    more » « less
  3. Abstract

    Spinning supermassive black holes (BHs) in active galactic nuclei magnetically launch relativistic collimated outflows, or jets. Without angular momentum supply, such jets are thought to perish within 3 orders of magnitude in distance from the BH, well before reaching kiloparsec scales. We study the survival of such jets at the largest scale separation to date, via 3D general relativistic magnetohydrodynamic simulations of rapidly spinning BHs immersed into uniform zero-angular-momentum gas threaded by a weak vertical magnetic field. We place the gas outside the BH sphere of influence, or the Bondi radius, chosen to be much larger than the BH gravitational radius,RB= 103Rg. The BH develops dynamically important large-scale magnetic fields, forms a magnetically arrested disk (MAD), and launches relativistic jets that propagate well outsideRBand suppress BH accretion to 1.5% of the Bondi rate,ṀB. Thus, low-angular-momentum accretion in the MAD state can form large-scale jets in Fanaroff–Riley (FR) type I and II galaxies. Subsequently, the disk shrinks and exits the MAD state: barely a disk (BAD), it rapidly precesses, whips the jets around, globally destroys them, and lets 5%–10% ofṀBreach the BH. Thereafter, the disk starts rocking back and forth by angles 90°–180°: the rocking accretion disk (RAD) launches weak intermittent jets that spread their energy over a large area and suppress BH accretion to ≲2%ṀB. Because the BAD and RAD states tangle up the jets and destroy them well insideRB, they are promising candidates for the more abundant, but less luminous, class of FR0 galaxies.

     
    more » « less
  4. Abstract

    We present theoretical expectations for infall toward supercluster-scale cosmological filaments, motivated by the Arecibo Pisces–Perseus Supercluster Survey (APPSS) to map the velocity field around the Pisces–Perseus Supercluster (PPS) filament. We use a minimum spanning tree applied to dark matter halos the size of galaxy clusters to identify 236 large filaments within the Millennium simulation. Stacking the filaments along their principal axes, we determine a well-defined, sharp-peaked velocity profile function that can be expressed in terms of the maximum infall rateVmaxand the distanceρmaxbetween the location of maximum infall and the principal axis of the filament. This simple, two-parameter functional form is surprisingly universal across a wide range of linear mass densities.Vmaxis positively correlated with the halo mass per length along the filament, andρmaxis negatively correlated with the degree to which the halos are concentrated along the principal axis. We also assess an alternative, single-parameter method usingV25, the infall rate at a distance of 25 Mpc from the axis of the filament. Filaments similar to the PPS haveVmax=612±116 km s−1,ρmax=8.9±2.1Mpc, andV25= 329 ± 68 km s−1. We create mock observations to model uncertainties associated with viewing angle, lack of three-dimensional velocity information, limited sample size, and distance uncertainties. Our results suggest that it would be especially useful to measure infall for a larger sample of filaments to test our predictions for the shape of the infall profile and the relationships among infall rates and filament properties.

     
    more » « less
  5. Abstract

    We confirm the planetary nature of TOI-5344 b as a transiting giant exoplanet around an M0-dwarf star. TOI-5344 b was discovered with the Transiting Exoplanet Survey Satellite photometry and confirmed with ground-based photometry (the Red Buttes Observatory 0.6 m telescope), radial velocity (the Habitable-zone Planet Finder), and speckle imaging (the NN-Explore Exoplanet Stellar Speckle Imager). TOI-5344 b is a Saturn-like giant planet (ρ= 0.800.15+0.17g cm−3) with a planetary radius of 9.7 ± 0.5R(0.87 ± 0.04RJup) and a planetary mass of13518+17M(0.420.06+0.05MJup). It has an orbital period of3.7926220.000010+0.000010days and an orbital eccentricity of0.060.04+0.07. We measure a high metallicity for TOI-5344 of [Fe/H] = 0.48 ± 0.12, where the high metallicity is consistent with expectations from formation through core accretion. We compare the metallicity of the M-dwarf hosts of giant exoplanets to that of M-dwarf hosts of nongiants (≲8R). While the two populations appear to show different metallicity distributions, quantitative tests are prohibited by various sample caveats.

     
    more » « less