skip to main content


Title: Understanding and Mitigating the Tradeoff between Robustness and Accuracy
Adversarial training augments the training set with perturbations to improve the robust error (over worst-case perturbations), but it often leads to an increase in the standard error (on unperturbed test inputs). Previous explanations for this tradeoff rely on the assumption that no predictor in the hypothesis class has low standard and robust error. In this work, we precisely characterize the effect of augmentation on the standard error in linear regression when the optimal linear predictor has zero standard and robust error. In particular, we show that the standard error could increase even when the augmented perturbations have noiseless observations from the optimal linear predictor. We then prove that the recently proposed robust self-training (RST) estimator improves robust error without sacrificing standard error for noiseless linear regression. Empirically, for neural networks, we find that RST with different adversarial training methods improves both standard and robust error for random and adversarial rotations and adversarial l_infty perturbations in CIFAR-10.  more » « less
Award ID(s):
2343611
NSF-PAR ID:
10472131
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the 37th International Conference on Machine Learning, PMLR
Date Published:
Format(s):
Medium: X
Location:
Proceedings of the 37th International Conference on Machine Learning, PMLR
Sponsoring Org:
National Science Foundation
More Like this
  1. Adversarial training augments the training set with perturbations to improve the robust error (over worst-case perturbations), but it often leads to an increase in the standard error (on unperturbed test inputs). Previous explanations for this tradeoff rely on the assumption that no predictor in the hypothesis class has low standard and robust error. In this work, we precisely characterize the effect of augmentation on the standard error in linear regression when the optimal linear predictor has zero standard and robust error. In particular, we show that the standard error could increase even when the augmented perturbations have noiseless observations from the optimal linear predictor. We then prove that the recently proposed robust self-training (RST) estimator improves robust error without sacrificing standard error for noiseless linear regression. Empirically, for neural networks, we find that RST with different adversarial training methods improves both standard and robust error for random and adversarial rotations and adversarial ℓ∞ perturbations in CIFAR-10. 
    more » « less
  2. Adversarial training augments the training set with perturbations to improve the robust error (over worst-case perturbations), but it often leads to an increase in the standard error (on unperturbed test inputs). Previous explanations for this tradeoff rely on the assumption that no predictor in the hypothesis class has low standard and robust error. In this work, we precisely characterize the effect of augmentation on the standard error in linear regression when the optimal linear predictor has zero standard and robust error. In particular, we show that the standard error could increase even when the augmented perturbations have noiseless observations from the optimal linear predictor. We then prove that the recently proposed robust self-training (RST) estimator improves robust error without sacrificing standard error for noiseless linear regression. Empirically, for neural networks, we find that RST with different adversarial training methods improves both standard and robust error for random and adversarial rotations and adversarial l_infty perturbations in CIFAR-10. 
    more » « less
  3. The use of random perturbations of ground truth data, such as random translation or scaling of bounding boxes, is a common heuristic used for data augmentation that has been shown to prevent overfitting and improve generalization. Since the design of data augmentation is largely guided by reported best practices, it is difficult to understand if those design choices are optimal. To provide a more principled perspective, we develop a game-theoretic interpretation of data augmentation in the context of object detection. We aim to find an optimal adversarial perturbations of the ground truth data (i.e., the worst case perturbations) that forces the object bounding box predictor to learn from the hardest distribution of perturbed examples for better test-time performance. We establish that the game-theoretic solution (Nash equilibrium) provides both an optimal predictor and optimal data augmentation distribution. We show that our adversarial method of training a predictor can significantly improve test-time performance for the task of object detection. On the ImageNet, Pascal VOC and MS-COCO object detection tasks, our adversarial approach improves performance by about 16%, 5%, and 2% respectively compared to the best performing data augmentation methods. 
    more » « less
  4. Despite breakthrough performance, modern learning models are known to be highly vulnerable to small adversarial perturbations in their inputs. While a wide variety of recent adversarial training methods have been effective at improving robustness to perturbed inputs (robust accuracy), often this benefit is accompanied by a decrease in accuracy on benign inputs (standard accuracy), leading to a tradeoff between often competing objectives. Complicating matters further, recent empirical evidence suggest that a variety of other factors (size and quality of training data, model size, etc.) affect this tradeoff in somewhat surprising ways. In this paper we provide a precise and comprehensive understanding of the role of adversarial training in the context of linear regression with Gaussian features. In particular, we characterize the fundamental tradeoff between the accuracies achievable by any algorithm regardless of computational power or size of the training data. Furthermore, we precisely characterize the standard/robust accuracy and the corresponding tradeoff achieved by a contemporary mini-max adversarial training approach in a high-dimensional regime where the number of data points and the parameters of the model grow in proportion to each other. Our theory for adversarial training algorithms also facilitates the rigorous study of how a variety of factors (size and quality of training data, model overparametrization etc.) affect the tradeoff between these two competing accuracies. 
    more » « less
  5. While adversarial training can improve robust accuracy (against an adversary), it sometimes hurts standard accuracy (when there is no adversary). Previous work has studied this tradeoff between standard and robust accuracy, but only in the setting where no predictor performs well on both objectives in the infinite data limit. In this paper, we show that even when the optimal predictor with infinite data performs well on both objectives, a tradeoff can still manifest itself with finite data. Furthermore, since our construction is based on a convex learning problem, we rule out optimization concerns, thus laying bare a fundamental tension between robustness and generalization. Finally, we show that robust self-training mostly eliminates this tradeoff by leveraging unlabeled data. 
    more » « less