skip to main content


Title: Dropsonde observations during the Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment
Abstract

The Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) field campaign provides accurate data for aerosol characterization and trace gas profiles, and establishes knowledge of the relationships between aerosols and water. The dropsonde dataset provides anin situcharacterization of the vertical thermodynamic structure of the atmosphere during 165 research flights by NASA Langley’s King Air research aircraft between February 2020 and June 2022 and four test flights between December 2019 and November 2021. The research flights covered the western North Atlantic region, off the coast of the Eastern United States and around Bermuda and covered all seasons. The dropsonde profiles provide observations of temperature, pressure, relative humidity, and horizontal and vertical winds between the surface and about 9 km. 801 dropsondes were released, of which 796 were processed and 788 provide complete profiles of all parameters between the flight level and the surface with normal parachute performance. Here, we describe the dataset, the processing of the measurements, general statistics, and applications of this rich dataset.

 
more » « less
NSF-PAR ID:
10472156
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
10
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Variations in the water vapor that atmospheric rivers (ARs) carry toward North America within Pacific storms strongly modulates the spatiotemporal distribution of west‐coast precipitation. The “AR Recon” program was established to improve forecasts of landfalling Pacific‐coast ARs and their associated precipitation. Dropsondes are deployed from weather reconnaissance aircraft and pressure sensors have been added to drifting ocean buoys to fill a major gap in standard weather observations, while research is being conducted on the potential for airborne Global Navigation Satellite System (GNSS) radio occultation (ARO) to also contribute to forecast improvement. ARO further expands the spatial coverage of the data collected during AR Recon flights. This study provides the first description of these data, which provide water vapor and temperature information typically as far as 300 km to the side of the aircraft. The first refractivity profiles from European Galileo satellites are provided and their accuracy is evaluated using the dropsondes. It is shown that spatial variations in the refractivity anomaly (difference from the climatological background) are modulated by AR features, including the low‐level jet and tropopause fold, illustrating the potential for RO measurements to represent key AR characteristics. It is demonstrated that assimilation of ARO refractivity profiles can influence the moisture used as initial conditions in a high‐resolution model. While the dropsonde measurements provide precise, in situ wind, temperature and water vapor vertical profiles beneath the aircraft, and the buoys provide surface pressure, ARO provides complementary thermodynamic information aloft in broad areas not otherwise sampled at no additional expendable cost.

     
    more » « less
  2. Abstract

    The abundance and sources of ice‐nucleating particles, particles required for heterogeneous ice nucleation, are long‐standing sources of uncertainty in quantifying aerosol‐cloud interactions. In this study, we demonstrate near closure between immersion freezing ice‐nucleating particle number concentration (nINPs) observations andnINPscalculated from simulated sea spray aerosol and dust. The Community Atmospheric Model with constrained meteorology was used to simulate aerosol concentrations at the Mace Head Research Station (North Atlantic) and over the Southern Ocean to the south of Tasmania (Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRN ocean campaign). Model‐predictednINPswere within a factor of 10 ofnINPsobserved with an off‐line ice spectrometer at Mace Head Research Station and Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRN ocean campaign, for 93% and 69% of observations, respectively. Simulated vertical profiles ofnINPsreveal that transported dust may be critical tonINPsin remote regions and that sea spray aerosol may be the dominate contributor to primary ice nucleation in Southern Ocean low‐level mixed‐phase clouds.

     
    more » « less
  3. Abstract

    During the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, the Balloon-bornE moduLar Utility for profilinG the lower Atmosphere (BELUGA) was deployed from an ice floe drifting in theFram Straitfrom 29 June to 27 July 2020. The BELUGA observations aimed to characterize the cloudy Arctic atmospheric boundary layer above the sea ice using a modular setup of five instrument packages. Thein situmeasurements included atmospheric thermodynamic and dynamic state parameters (air temperature, humidity, pressure, and three-dimensional wind), broadband solar and terrestrial irradiance, aerosol particle microphysical properties, and cloud particle images. In total, 66 profile observations were collected during 33 balloon flights from the surface to maximum altitudes of 0.3 to 1.5 km. The profiles feature a high vertical resolution of 0.01 m to 1 m, including measurements below, inside, and above frequently occurring low-level clouds. This publication describes the balloon operations, instruments, and the obtained data set. We invite the scientific community for joint analysis and model application of the freely available data on PANGAEA.

     
    more » « less
  4. Abstract

    During the summer of 2018, the upward-pointing Wyoming Cloud Lidar (WCL) was deployed on board the University of Wyoming King Air (UWKA) research aircraft for the Biomass Burning Flux Measurements of Trace Gases and Aerosols (BB-FLUX) field campaign. This paper describes the generation of calibrated attenuated backscatter coefficients and aerosol extinction coefficients from the WCL measurements. The retrieved aerosol extinction coefficients at the flight level strongly correlate (correlation coefficient, rr > 0.8) with in situ aerosol concentration and carbon monoxide (CO) concentration, providing a first-order estimate for converting WCL extinction coefficients into vertically resolved CO and aerosol concentration within wildfire smoke plumes. The integrated CO column concentrations from the WCL data in nonextinguished profiles also correlate (rr = 0.7) with column measurements by the University of Colorado Airborne Solar Occultation Flux instrument, indicating the validity of WCL-derived extinction coefficients. During BB-FLUX, the UWKA sampled smoke plumes from more than 20 wildfires during 35 flights over the western United States. Seventy percent of flight time was spent below 3 km above ground level (AGL) altitude, although the UWKA ascended up to 6 km AGL to sample the top of some deep smoke plumes. The upward-pointing WCL observed a nearly equal amount of thin and dense smoke below 2 km and above 5 km due to the flight purpose of targeted fresh fire smoke. Between 2 and 5 km, where most of the wildfire smoke resided, the WCL observed slightly more thin smoke than dense smoke due to smoke spreading. Extinction coefficients in dense smoke were 2–10 times stronger, and dense smoke tended to have larger depolarization ratio, associated with irregular aerosol particles.

     
    more » « less
  5. We examine the main drivers that may elevate biomass and biodiversity of non-chemosynthetic benthic megafauna of the lower bathyal (800-3500m depth) of the Mid-Atlantic Ridge in the North Atlantic Ocean (MAR). Specifically: 1. Primary production in surface waters (10°-48°N) from remote sensing data 2002-2020 over the MAR was not significantly different from abyssal regions to the east and west. We reject the hypothesis that presence of a mid ocean ridge may enhance surface primary production. 2. The quantity of particulate organic matter reaching the sea floor was estimated as a proportion of surface export production scaled by bathymetry. Flux was 1.3 to 3.0 times greater on the MAR as a function of shorter vertical transport distance from the surface than on adjacent abyssal regions. 3. Depth variation effect on species richness. Demersal fishes living between 41° and 60°N showed a maximum of species richness at 2000 m depth and linear increase in regional (Gamma) diversity of 32 species per 1,000 m elevation of the MAR above the abyss. Elevated topography provides niches for species that cannot otherwise survive. 4. Substrate heterogeneity. The MAR >95% covered with soft sediment with frequent hard rocky patches spaced at a mean nearest neighbour distance of <500 m. Over 90% were <1 km apart. Animals are readily able to disperse between such patches increasing biodiversity through the additive effect of soft and hard substrate fauna on the MAR. 5. Presence of a biogeographic overlap zone. The MAR harbours bathyal species known from Western Atlantic and Eastern Atlantic continental slopes with meridional asymmetry resulting in bias toward predominance of Eastern species. The mix of species contributes to increased diversity to the east of the MAR. Multiple factors support increase in biomass and biodiversity on the MAR. Biological data are almost entirely absent from 12° to 33°N, the part of the MAR which may be mined for polymetallic sulphide ore deposits. This study enables some predictions of biomass and biodiversity but there is urgent need for intensive biological sampling across the MAR throughout the proposed mining areas south of the Azores. 
    more » « less