skip to main content


Title: Environmental DNA ‐based detection of pathogens in trade and captive settings: Best practices and validation for Batrachochytrium salamandrivorans
Abstract

Detecting pathogens in the live animal trade is critical for tracking and preventing their movement, introduction and spillover into susceptible fauna. However, the scale of the live animal trade makes individually testing animals infeasible for all but the most economically important taxa. For instance, while the fungal pathogen,Batrachochytrium salamandrivorans(Bsal), threatens amphibian, particularly caudate diversity, in Europe and the Americas, screening even a fraction of the millions of live amphibians imported into the United States, alone, is impractically laborious and expensive. A promising alternative to individual‐level sampling (e.g. swabbing the skin of salamanders) is to instead collect DNA from the animals' environment (e.g. housing container or water) which allows us to screen a whole group of animals at a time.

We used a series of experiments withBsal‐spiked water and substrates and experimentally infected rough‐skinned newts (Taricha granulosa) to determine which methods yield the mostBsalenvironmental DNA (eDNA) and evaluate the capacity of these methods to detectBsal‐infected animals in conditions found in captive settings and trade.

We found that filtering water housing infected animals for even an hour can consistently recover detectable levels ofBsaleDNA, that there is little evidence ofBsaleDNA being clumped in housing containers or swamped or inhibited by dirty housing containers, and that eDNA‐based methods achieves an equivalent or higher chance of detectingBsalinfections in a (virtual) population of co‐housed newts with fewer samples than individual swabs.

By sampling the genetic materials accumulated from a whole group of animals, eDNA‐based methods are a powerful means of detecting pathogens, such asBsal, in shipments and captive populations. These methods bring routine pathogen surveillance into reach in many more contexts and can thus be an important tool in conservation and disease control.

 
more » « less
NSF-PAR ID:
10472205
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Methods in Ecology and Evolution
Volume:
14
Issue:
11
ISSN:
2041-210X
Format(s):
Medium: X Size: p. 2787-2799
Size(s):
["p. 2787-2799"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As camera trapping has become a standard practice in wildlife ecology, developing techniques to extract additional information from images will increase the utility of generated data. Despite rapid advancements in camera trapping practices, methods for estimating animal size or distance from the camera using captured images have not been standardized. Deriving animal sizes directly from images creates opportunities to collect wildlife metrics such as growth rates or changes in body condition. Distances to animals may be used to quantify important aspects of sampling design such as the effective area sampled or distribution of animals in the camera's field‐of‐view.

    We present a method of using pixel measurements in an image to estimate animal size or distance from the camera using a conceptual model in photogrammetry known as the ‘pinhole camera model’. We evaluated the performance of this approach both using stationary three‐dimensional animal targets and in a field setting using live captive reindeerRangifer tarandusranging in size and distance from the camera.

    We found total mean relative error of estimated animal sizes or distances from the cameras in our simulation was −3.0% and 3.3% and in our field setting was −8.6% and 10.5%, respectively. In our simulation, mean relative error of size or distance estimates were not statistically different between image settings within camera models, between camera models or between the measured dimension used in calculations.

    We provide recommendations for applying the pinhole camera model in a wildlife camera trapping context. Our approach of using the pinhole camera model to estimate animal size or distance from the camera produced robust estimates using a single image while remaining easy to implement and generalizable to different camera trap models and installations, thus enhancing its utility for a variety of camera trap applications and expanding opportunities to use camera trap images in novel ways.

     
    more » « less
  2. Abstract

    Current methods for identifying and predicting infectious disease dynamics in wildlife populations are limited. Pathogen transmission dynamics can be complex, influenced by behavioural interactions between and among hosts, pathogens and their environments. These behaviours may also be influenced directly by observers, with observational research methods being limited to habituated species. Banded mongooseMungos mungoare social, medium size carnivores infected with the novel tuberculosis pathogenMycobacterium mungi. This pathogen is principally transmitted during normal olfactory communication behaviours. Banded mongoose behavioural responses to humans change over the landscape, limiting the use of direct observational approaches in areas where mongoose are threatened and flee.

    The accelerometers in bio‐logging devices have been used previously to identify distinct behaviours in wildlife species, providing a tool to quantifying specific behaviours in ecological studies. We deployed Axy‐5X model accelerometers (TechnoSmArt) on captive mongoose to determine whether accelerometers could be used to identify key mongoose behavioural activities previously associated withM. mungitransmission.

    After two collaring periods, we determined that three distinct behavioural activities could be identified in the accelerometer data: bipedal vertical vigilance, running and scent marking activity; behaviours that have been shown to vary across land type in the banded mongoose.

    Results from this work advance current data analytics and provide modifications to data analysis works flows, updating and expanding upon current methodologies. We also provide preliminary evidence of successful mathematical classification of the target behaviours, supporting the future use of these devices. Methods applied here may allow model estimates ofM. mungitransmission in free‐ranging mongoose to be refined with possible application to other systems where direct observation approaches have limited application.

     
    more » « less
  3. null (Ed.)
    Transmission is the fundamental process whereby pathogens infect their hosts and spread through populations, and can be characterized using mathematical functions. The functional form of transmission for emerging pathogens can determine pathogen impacts on host populations and can inform the efficacy of disease management strategies. By directly measuring transmission between infected and susceptible adult eastern newts (Notophthalmus viridescens) in aquatic mesocosms, we identified the most plausible transmission function for the emerging amphibian fungal pathogen Batrachochytrium salamandrivorans (Bsal). Although we considered a range of possible transmission functions, we found that Bsal transmission was best explained by pure frequency dependence. We observed that >90% of susceptible newts became infected within 17 days post-exposure to an infected newt across a range of host densities and initial infection prevalence treatments. Under these conditions, we estimated R_0 = 4.9 for Bsal in an eastern newt population. Our results suggest that Bsal has the capability of driving eastern newt populations to extinction and that managing host density may not be an effective management strategy. Intervention strategies that prevent Bsal introduction or increase host resistance or tolerance to infection may be more effective. Our results add to the growing empirical evidence that transmission of wildlife pathogens can saturate and be functionally frequency-dependent. 
    more » « less
  4. Summary

    SUMOylation as one of the protein post‐translational modifications plays crucial roles in multiple biological processes of eukaryotic organisms.Botrytis cinereais a devastating fungal pathogen and capable of infecting plant hosts at low temperature. However, the molecular mechanisms of low‐temperature adaptation are largely unknown in fungi.

    Combining with biochemical methods and biological analyses, we report that SUMOylation regulates pathogen survival at low temperature and oxidative DNA damage response during infection inB. cinerea. The heat shock protein (Hsp70) BcSsb and E3 ubiquitin ligase BcRad18 were identified as substrates of SUMOylation; moreover, their SUMOylation both requires a single unique SUMO‐interacting motif (SIM).

    SUMOylated BcSsb regulates β‐tubulin accumulation, thereby affecting the stability of microtubules and consequently mycelial growth at low temperature. On the contrary, SUMOylated BcRad18 modulates mono‐ubiquitination of the sliding clamp protein proliferating cell nuclear antigen (PCNA), which is involved in response to oxidative DNA damage during infection.

    Our study uncovers the molecular mechanisms of SUMOylation‐mediated low‐temperature survival and oxidative DNA damage tolerance during infection in a devastating fungal pathogen, which provides novel insights into low‐temperature adaptation and pathogenesis for postharvest pathogens as well as new targets for inhibitor invention in disease control.

     
    more » « less
  5. Summary

    Histone lysine methylations (HLMs) are implicated in control of gene expression in different eukaryotes. However, the role of HLMs in regulating desirable crop traits and the enzymes involved in these modifications are poorly understood.

    We studied the functions of tomato histone H3 lysine methyltransferases SET Domain Group 33 (SDG33) and SDG34 in biotic and abiotic stress responses.SDG33andSDG34gene edited mutants were altered in H3K36 and H3K4 methylations, and expression of genes involved in diverse processes and responses to biotic and abiotic stimuli.

    The double but not the single mutants show resistance to the fungal pathogenBotrytis cinerea.Interestingly, single mutants were tolerant to drought and the double mutant showed superior tolerance and plant growth consistent with independent and additive functions. Mutants maintained higher water status during drought and improved recovery and survival after lapse of drought.

    Notably, diminution of H3K4 and H3K36 trimethylation and expression of negative regulators in challenged plants contributes to stress tolerance of the mutants. Mutations inSDG33andSDG34are likely to remove predisposition to biotic and abiotic stress by disrupting permissive transcriptional context promoting expression of negative regulatory factors. These allows improvement of stress and pathogen tolerance, without growth trade‐offs, through modification of histone epigenetic marks.

     
    more » « less