skip to main content

This content will become publicly available on October 1, 2024

Title: Angular dependence of spin-orbit torque in monolayer Fe3GeTe2
In ferromagnetic systems lacking inversion symmetry, an applied electric field can control the ferromagnetic order parameters through the spin-orbit torque. The prototypical example is a bilayer heterostructure composed of a ferromagnet and a heavy metal that acts as a spin current source. In addition to such bilayers, spin-orbit coupling can mediate spin-orbit torques in ferromagnets that lack bulk inversion symmetry. A recently discovered example is the two-dimensional monolayer ferromagnet Fe3GeTe2. In this paper, we use first-principles calculations to study the spin-orbit torque and ensuing magnetic dynamics in this material. By expanding the torque versus magnetization direction as a series of vector spherical harmonics, we find that higher order terms (up to ℓ=4) are significant and play important roles in the magnetic dynamics. They give rise to deterministic, magnetic field-free electrical switching of perpendicular magnetization.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review B
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spinel cobalt vanadate CoV2O4 has been grown on (001) SrTiO3 substrates. Using torque magnetometry experiments, we find that the previously observed temperature-induced anisotropy change, where the easy axis changes from the out-of-plane [001] direction to a biaxial anisotropy with planar <100> easy axes, occurs in a gradual second-order structural phase transition. This paper characterizes this transition and the magnetic anisotropies in the (001), (100), and (-110) rotation planes, and explores their field dependence up to 30 T. Below 80 K, hysteretic features appear around the hard axes, i.e., the out-of-plane direction in (-110) and (010) rotations and the planar <110> directions in (001) rotations. This is due to a Zeeman energy that originates from the lag of the magnetization with respect to the applied magnetic field as the sample is rotated. The appearance of the hysteresis, which persists up to very high fields, shows that the anisotropy at low temperature is rather strong. Additionally, field-dependent distortions to the symmetry of the torque response in increasing applied fields shows that magnetostriction plays a large role in determining the direction and magnitude of the anisotropy. 
    more » « less
  2. Abstract

    Magnetization dynamics induced by spin–orbit torques in a heavy‐metal/ferromagnet can potentially be used to design low‐power spintronics and logic devices. Recent computations have suggested that a strain‐mediated spin–orbit torque (SOT) switching in magnetoelectric (ME) heterostructures is fast, energy‐efficient, and permits a deterministic 180° magnetization switching. However, its experimental realization has remained elusive. Here, the coexistence of the strain‐mediated ME coupling and the SOT in a CoFeB/Pt/ferroelectric hybrid structure is shown experimentally. The voltage‐induced strain only slightly modifies the efficiency of SOT generation, but it gives rise to an effective magnetic anisotropy and rotates the magnetic easy axis which eliminates the incubation delay in current‐induced magnetization switching. The phase field simulations show that the electric‐field‐induced effective magnetic anisotropy field can reduce the switching time approximately by a factor of three for SOT in‐plane magnetization switching. It is anticipated that such strain‐mediated ME‐SOT hybrid structures may enable field‐free, ultrafast magnetization switching.

    more » « less
  3. none (Ed.)
    The recent prediction that honeycomb lattices of Co2+ (3d7) ions could host dominant Kitaev interactions provides an exciting direction for exploration of new routes to stabilizing Kitaev’s quantum spin liquid in real materials. Na3Co2SbO6 has been singled out as a potential material candidate provided that spin and orbital moments couple into a Jeff = 1/2 ground state, and that the relative strength of trigonal crystal field and spin-orbit coupling acting on Co ions can be tailored. Using x-ray linear dichroism (XLD) and x-ray magnetic circular dichroism (XMCD) experiments, alongside configuration interaction calculations, we confirm the counterintuitive positive sign of the trigonal crystal field acting on Co2+ ions and test the validity of the Jeff = 1/2 description of the electronic ground state. The results lend experimental support to recent theoretical predictions that a compression (elongation) of CoO6 octahedra along (perpendicular to) the trigonal axis would drive this cobaltate toward the Kitaev limit, assuming the Jeff = 1/2 character of the electronic ground state is preserved. 
    more » « less
  4. The emergence of embedded magnetic random-access memory (MRAM) and its integration in mainstream semiconductor manufacturing technology have created an unprecedented opportunity for engineering computing systems with improved performance, energy efficiency, lower cost, and unconventional computing capabilities. While the initial interest in the existing generation of MRAM—which is based on the spin-transfer torque (STT) effect in ferromagnetic tunnel junctions—was driven by its nonvolatile data retention and lower cost of integration compared to embedded Flash (eFlash), the focus of MRAM research and development efforts is increasingly shifting toward alternative write mechanisms (beyond STT) and new materials (beyond ferromagnets) in recent years. This has been driven by the need for better speed vs density and speed vs endurance trade-offs to make MRAM applicable to a wider range of memory markets, as well as to utilize the potential of MRAM in various unconventional computing architectures that utilize the physics of nanoscale magnets. In this Perspective, we offer an overview of spin–orbit torque (SOT) as one of these beyond-STT write mechanisms for the MRAM devices. We discuss, specifically, the progress in developing SOT-MRAM devices with perpendicular magnetization. Starting from basic symmetry considerations, we discuss the requirement for an in-plane bias magnetic field which has hindered progress in developing practical SOT-MRAM devices. We then discuss several approaches based on structural, magnetic, and chiral symmetry-breaking that have been explored to overcome this limitation and realize bias-field-free SOT-MRAM devices with perpendicular magnetization. We also review the corresponding material- and device-level challenges in each case. We then present a perspective of the potential of these devices for computing and security applications beyond their use in the conventional memory hierarchy. 
    more » « less
  5. Abstract All-electrical driven magnetization switching attracts much attention in next-generation spintronic memory and logic devices, particularly in magnetic random-access memory (MRAM) based on the spin–orbit torque (SOT), i.e. SOT-MRAM, due to its advantages of low power consumption, fast write/read speed, and improved endurance, etc. For conventional SOT-driven switching of the magnet with perpendicular magnetic anisotropy, an external assisted magnetic field is necessary to break the inversion symmetry of the magnet, which not only induces the additional power consumption but also makes the circuit more complicated. Over the last decade, significant effort has been devoted to field-free magnetization manipulation by using SOT. In this review, we introduce the basic concepts of SOT. After that, we mainly focus on several approaches to realize the field-free deterministic SOT switching of the perpendicular magnet. The mechanisms mainly include mirror symmetry breaking, chiral symmetry breaking, exchange bias, and interlayer exchange coupling. Furthermore, we show the recent progress in the study of SOT with unconventional origin and symmetry. The final section is devoted to the industrial-level approach for potential applications of field-free SOT switching in SOT-MRAM technology. 
    more » « less