skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cryptic behavior and activity cycles of a small mammal keystone species revealed through accelerometry: a case study of Merriam’s kangaroo rats (Dipodomys merriami)
Abstract BackgroundKangaroo rats are small mammals that are among the most abundant vertebrates in many terrestrial ecosystems in Western North America and are considered both keystone species and ecosystem engineers, providing numerous linkages between other species as both consumers and resources. However, there are challenges to studying the behavior and activity of these species due to the difficulty of observing large numbers of individuals that are small, secretive, and nocturnal. Our goal was to develop an integrated approach of miniaturized animal-borne accelerometry and radiotelemetry to classify the cryptic behavior and activity cycles of kangaroo rats and test hypotheses of how their behavior is influenced by light cycles, moonlight, and weather. MethodsWe provide a proof-of-concept approach to effectively quantify behavioral patterns of small bodied (< 50 g), nocturnal, and terrestrial free-ranging mammals using large acceleration datasets by combining low-mass, miniaturized animal-borne accelerometers with radiotelemetry and advanced machine learning techniques. We developed a method of attachment and retrieval for deploying accelerometers, a non-disruptive method of gathering observational validation datasets for acceleration data on free-ranging nocturnal small mammals, and used these techniques on Merriam’s kangaroo rats to analyze how behavioral patterns relate to abiotic factors. ResultsWe found that Merriam’s kangaroo rats are only active during the nighttime phases of the diel cycle and are particularly active during later light phases of the night (i.e., late night, morning twilight, and dawn). We found no reduction in activity or foraging associated with moonlight, indicating that kangaroo rats are actually more lunarphilic than lunarphobic. We also found that kangaroo rats increased foraging effort on more humid nights, most likely as a mechanism to avoid cutaneous water loss. ConclusionsSmall mammals are often integral to ecosystem functionality, as many of these species are highly abundant ecosystem engineers driving linkages in energy flow and nutrient transfer across trophic levels. Our work represents the first continuous detailed quantitative description of fine-scale behavioral activity budgets in kangaroo rats, and lays out a general framework for how to use miniaturized biologging devices on small and nocturnal mammals to examine behavioral responses to environmental factors.  more » « less
Award ID(s):
1856404
PAR ID:
10472438
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Movement Ecology
Volume:
11
Issue:
1
ISSN:
2051-3933
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Behavioral variation within a population can be influenced by physical factors such as size, sex, and body condition. This variation may contribute to intraspecific niche breadth by enabling individuals to exploit different niches. To examine how anatomy shapes behavior, we conducted open field tests on desert kangaroo rats (Dipodomys deserti, n=16) and compared their activity to sex, morphology, and body condition. We constructed an arena within the species' natural habitat to simulate ecologically relevant conditions and recorded behavior over 15 min. We quantified speed and distance traveled, used principal component analysis to explore behavioral patterns, and used linear models to test for associations between behavior, locomotor traits, and anatomical variables. We found that individuals with lower body condition scores spent more time exploring, males were more exploratory than females, and individuals with longer feet – a proxy for skeletal size – traveled further. However, behavior and locomotor performance were not significantly correlated. Lastly, individuals moved faster and farther on full moon nights compared to new moon nights, indicating that moonlight influences movement strategy – potentially reflecting trade-offs between foraging and predation risk. These findings highlight species-specific drivers of behavioral variation and underscore the importance of understanding behavioral variability of desert mammals. 
    more » « less
  2. Changes in lunar illumination alter the balance of risks and opportunities for animals, influencing activity patterns and species interactions. We examined if and how terrestrial mammals respond to the lunar cycle in some of the darkest places: the floors of tropical forests. We analysed long-term camera trapping data on 86 mammal species from 17 protected forests on three continents. Conservative categorization of activity during the night revealed pronounced avoidance of moonlight (lunar phobia) in 12 species, compared with pronounced attraction to moonlight (lunar philia) in only three species. However, half of all species in our study responded to lunar phases, either changing how nocturnal they were, altering their overall level of activity, or both. Avoidance of full moon was more common, exhibited by 30% of all species compared with 20% of species that exhibited attraction. Nocturnal species, especially rodents, were over-represented among species that avoided full moon. Artiodactyla were more prominent among species attracted to full moon. Our findings indicate that lunar phases influence animal behaviour even beneath the forest canopy. Such impacts may be exacerbated in degraded and fragmented forests. Our study offers a baseline representing relatively intact and well-protected contexts together with an intuitive approach for detecting activity shifts in response to environmental change. 
    more » « less
  3. ABSTRACT Desert kangaroo rats (Dipodomys deserti) construct burrows that can create micro-niches favorable to increased microbial activity. The aim of this study was to characterize the bacterial communities found in kangaroo rat burrows, in proximal desert surface sand, and in samples from kangaroo rats. We collected samples from burrow ceilings of actively inhabited burrows, from burrows that were no longer in use, and from the proximal surface sand in the Sonoran Desert, Yuma, AZ. Following DNA extraction from samples, 16S rRNA gene sequencing was performed, and functional predictions were made and assessed for each characterized bacterial community. Active burrow samples exhibited greater alpha diversity but similar beta diversity when compared to surface sand (P< 0.05), with no significant differences observed between abandoned and active burrows. Bacterial genera and genes related to nitrogen fixation, nitrification, and urea hydrolysis were found in significantly higher abundance in active burrows compared to the surface sand (P< 0.05). The core microbiome of active burrow samples was different from surface sand, including higher abundances ofAcidimicrobialesandAcidobacteriasubdivision Gp7. Active burrow samples included 30 unique genera. Kangaroo rat anal swabs shared 12, cheek pouches shared 6 unique genera with burrows. These findings suggest that kangaroo rats can shape the microbial composition of their burrow environment through the introduction of food material and waste, facilitating increased species richness and bacterial diversity.IMPORTANCEAnimals can alter soil parameters, including microbial composition through burrowing activities, excretion, and dietary composition. Desert kangaroo rats (Dipodomys deserti) construct burrows within loose desert sand that have microclimatic conditions different from the surrounding desert climate. In this study, we explored the effect of disturbance from kangaroo rat activities on the bacterial composition of sand. We compared the bacterial community compositions of kangaroo rat (D. deserti) samples, their burrows, and the proximal surface sand. The results showed that burrow sand shows higher richness and diversity of bacterial community with higher abundances of bacterial genera and genes associated with nitrogen fixation, nitrification, and urea hydrolysis compared to the surface sand. These findings suggest that kangaroo rats affect the microbial composition of their burrow environment through the introduction of food material and waste. 
    more » « less
  4. Widespread human development has led to the proliferation of artificial light at night, an increasingly recognized but poorly understood component of anthropogenic global change. Animals specialized to diurnal activity are presented opportunities to use this night-light niche, but the ecological consequences are largely unknown. While published records make note of nocturnal activity in a diversity of diurnal taxa, few case studies have gone beyond isolated observations to quantify patterns of nocturnal activity, document animal behavior, and describe new species interactions. From 13 June to 15 July 2017, we conducted hourly nocturnal surveys to assess how two species of diurnal Anolis lizards (Leach’s Anole, Anolis leachii, and Watt’s Anole, A. wattsi) use artificial light on Long Island, Antigua. Our data show that both anole species foraged in artificially illuminated habitats and were more active prior to sunrise compared to the early night. Mark-resight data for a focal species, A. leachii, suggest that patterns of nocturnal activity were not significantly different between individuals. Finally, our behavioral observations for the two anoles and a third lizard species, the nocturnal Thick-tailed Gecko (Thecadactylus rapicauda), reveal a lack of agonistic interactions. Our study reveals an altered temporal niche for two diurnal Antiguan lizards and adds to a growing body of evidence documenting the broad influences of anthropogenic change on biodiversity. 
    more » « less
  5. Abstract Body size is a key factor that influences antipredator behavior. For animals that rely on jumping to escape from predators, there is a theoretical trade‐off between jump distance and acceleration as body size changes at both the inter‐ and intraspecific levels. Assuming geometric similarity, acceleration will decrease with increasing body size due to a smaller increase in muscle cross‐sectional area than body mass. Smaller animals will likely have a similar jump distance as larger animals due to their shorter limbs and faster accelerations. Therefore, in order to maintain acceleration in a jump across different body sizes, hind limbs must be disproportionately bigger for larger animals. We explored this prediction using four species of kangaroo rats (Dipodomysspp.), a genus of bipedal rodent with similar morphology across a range of body sizes (40–150 g). Kangaroo rat jump performance was measured by simulating snake strikes to free‐ranging individuals. Additionally, morphological measurements of hind limb muscles and segment lengths were obtained from thawed frozen specimens. Overall, jump acceleration was constant across body sizes and jump distance increased with increasing size. Additionally, kangaroo rat hind limb muscle mass and cross‐sectional area scaled with positive allometry. Ankle extensor tendon cross‐sectional area also scaled with positive allometry. Hind limb segment length scaled isometrically, with the exception of the metatarsals, which scaled with negative allometry. Overall, these findings support the hypothesis that kangaroo rat hind limbs are built to maintain jump acceleration rather than jump distance. Selective pressure from single‐strike predators, such as snakes and owls, likely drives this relationship. 
    more » « less