skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis of Gamma-Butyrolactone Hormones Enables Understanding of Natural Product Induction
Bacteria produce natural products (NPs) via biosynthetic gene clusters. Unfortunately, many biosynthetic gene clusters are silent under traditional laboratory conditions. To access novel NPs, a better understanding of their regulation is needed. γ-Butyrolactones, including the A-factor and Streptomyces coelicolor butanolides, SCBs, are a major class of Streptomyces’ hormones. Study of these hormones has been limited due to challenges in accessing them in stereochemically pure forms. Herein, we describe an efficient route to (R)-paraconyl alcohol, a key intermediate for these molecules, as well as a biocatalytic method to access the exocyclic hydroxyl group that differentiates A-factor-type from SCB-type hormones. Utilizing these methods, a library of hormones have been synthesized and tested in a green fluorescent protein reporter assay for their ability to relieve repression by the repressor ScbR. This allowed the most quantitative structure–activity relationship of γ-butyrolactones and a cognate repressor to date. Bioinformatics analysis strongly suggests that many other repressors of NP biosynthesis likely bind similar molecules. This efficient, diversifiable synthesis will enable further investigation of the regulation of NP biosynthesis.  more » « less
Award ID(s):
2236897
PAR ID:
10472455
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACS Chemical Biology
Date Published:
Journal Name:
ACS Chemical Biology
Volume:
18
Issue:
7
ISSN:
1554-8929
Page Range / eLocation ID:
1624 to 1631
Subject(s) / Keyword(s):
quorum sensing, natural products
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Streptomycesspecies are renowned for their ability to produce bioactive natural products (NPs) via biosynthetic gene clusters (BGCs). However, many BGCs remain transcriptionally silent under standard laboratory conditions. Among the key regulatory mechanisms for NP biosynthesis are theγ‐butyrolactone (GBL) signaling molecules, which have been widely studied for their role in repressor‐molecule circuits. While theS. coelicolorbutanolides (SCBs) and A‐factor fromS. griseushave been extensively studied, the virginiae butanolides (VBs) fromS. virginiae,which alleviate repression of the biosynthesis of the antibiotic virginiamycins via binding to the cluster situated TetR‐like repressor BarA, remain understudied. This is in large part due to limited access to enantiopure VBs. Herein, we report a diastereoselective and diversifiable route to access the VB hormones, starting from a protected (R)‐paraconyl alcohol intermediate. A library of VB derivatives was synthesized and tested for their ability to alleviate repression of BarA using a newly developed green fluorescent protein (GFP) reporter assay. The synthesis and assay described herein established the most quantitative structure–activity relationship (SAR) analysis of the VBs to date. Overall, this study provides new tools for probing NP regulation inStreptomycesand enables new strategies for BGC activation using synthetic GBL molecules. 
    more » « less
  2. Actinobacteria are a large and diverse group of bacteria that are known to produce a wide range of secondary metabolites, many of which have important biological activities, including antibiotics, anti-cancer agents, and immunosuppressants. The biosynthesis of these compounds is often highly regulated with many natural products (NPs) being produced at very low levels in laboratory settings. Environmental factors, such as small molecule elicitors, can induce the production of secondary metabolites. Specifically, they can increase titers of known NPs as well as enabling discovery of novel NPs typically produced at undetectable levels. These elicitors can be NPs, including antibiotics or hormones, or synthetic compounds. In recent years, there has been a growing interest in the use of small molecule elicitors to induce the production of secondary metabolites from actinobacteria, especially for the discovery of NPs from “silent” biosynthetic gene clusters. This review aims to highlight classes of molecules that induce secondary metabolite production in actinobacteria and to describe the potential mechanisms of induction. 
    more » « less
  3. Abstract Microbes produce a broad spectrum of antibiotic natural products, including many DNA-damaging genotoxins. Among the most potent of these are DNA alkylating agents in the spirocyclopropylcyclohexadienone (SCPCHD) family, which includes the duocarmycins, CC-1065, gilvusmycin, and yatakemycin. The yatakemycin biosynthesis cluster in Streptomyces sp. TP-A0356 contains an AlkD-related DNA glycosylase, YtkR2, that serves as a self-resistance mechanism against yatakemycin toxicity. We previously reported that AlkD, which is not present in an SCPCHD producer, provides only limited resistance against yatakemycin. We now show that YtkR2 and C10R5, a previously uncharacterized homolog found in the CC-1065 biosynthetic gene cluster of Streptomyces zelensis , confer far greater resistance against their respective SCPCHD natural products. We identify a structural basis for substrate specificity across gene clusters and show a correlation between in vivo resistance and in vitro enzymatic activity indicating that reduced product affinity—not enhanced substrate recognition—is the evolutionary outcome of selective pressure to provide self-resistance against yatakemycin and CC-1065. 
    more » « less
  4. Stedman, Kenneth M. (Ed.)
    ABSTRACT Here, we report the draft genome sequences of two related Streptomyces sp. strains, JV180 and SP18CM02. Despite their isolation from soils in Connecticut and Missouri (USA), respectively, they are strikingly similar in gene content. Both belong to the Streptomyces griseus clade and harbor several secondary metabolite biosynthetic gene clusters. 
    more » « less
  5. Reguera, Gemma (Ed.)
    ABSTRACT Polycyclic tetramate macrolactams (PTMs) are bioactive natural products commonly associated with certain actinobacterial and proteobacterial lineages. These molecules have been the subject of numerous structure-activity investigations since the 1970s. New members continue to be pursued in wild and engineered bacterial strains, and advances in PTM biosynthesis suggest their outwardly simplistic biosynthetic gene clusters (BGCs) belie unexpected product complexity. To address the origins of this complexity and understand its influence on PTM discovery, we engaged in a combination of bioinformatics to systematically classify PTM BGCs and PTM-targeted metabolomics to compare the products of select BGC types. By comparing groups of producers and BGC mutants, we exposed knowledge gaps that complicate bioinformatics-driven product predictions. In sum, we provide new insights into the evolution of PTM BGCs while systematically accounting for the PTMs discovered thus far. The combined computational and metabologenomic findings presented here should prove useful for guiding future discovery.<bold>IMPORTANCE</bold>Polycyclic tetramate macrolactam (PTM) pathways are frequently found within the genomes of biotechnologically important bacteria, includingStreptomycesandLysobacterspp.Their molecular products are typically bioactive, having substantial agricultural and therapeutic interest. Leveraging bacterial genomics for the discovery of new related molecules is thus desirable, but drawing accurate structural predictions from bioinformatics alone remains challenging. This difficulty stems from a combination of previously underappreciated biosynthetic complexity and remaining knowledge gaps, compounded by a stream of yet-uncharacterized PTM biosynthetic loci gleaned from recently sequenced bacterial genomes. We engaged in the following study to create a useful framework for cataloging historic PTM clusters, identifying new cluster variations, and tracing evolutionary paths for these molecules. Our data suggest new PTM chemistry remains discoverable in nature. However, our metabolomic and mutational analyses emphasize the practical limitations of genomics-based discovery by exposing hidden complexity. 
    more » « less