skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Eliminating Micro-Architectural Side-Channel Attacks using Near Memory Processing
Secure architectures are becoming an increasingly common demand. This is due in large part to the rise of cloud computing, as users are trusting their data with hardware that they do not own. Unfortunately, many secure computation and isolation techniques are still susceptible to side-channel attacks. While various defenses to side-channel attacks exist, each tends to be targeted to a specific vulnerability and comes with a high runtime overhead, making it difficult to combine these defenses together in a performant manner.This work proposes an efficient design for preventing a large range of cache side-channel attacks by leveraging a near-memory processing (NMP) architecture. Specifically, the proposed design stores all sensitive data in isolated NMP vaults and performs all computation involving that sensitive data on NMP cores. Our approach eliminates possible cache side-channels while also minimizing runtime overhead when the parallelizability of NMP architecture is leveraged. Simulation results from a cycle-accurate architecture model shows that offloading secure computation to NMP cores can have as little as 0.26% overhead.  more » « less
Award ID(s):
1908806
PAR ID:
10472545
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2022 IEEE International Symposium on Secure and Private Execution Environment Design (SEED)
ISBN:
978-1-6654-8526-5
Page Range / eLocation ID:
179 to 189
Subject(s) / Keyword(s):
near memory processing, secure architecture, cache side-channel defense, hardware security
Format(s):
Medium: X
Location:
Storrs, CT, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Commodity operating system (OS) kernels, such as Windows, Mac OS X, Linux, and FreeBSD, are susceptible to numerous security vulnerabilities. Their monolithic design gives successful attackers complete access to all application data and system resources. Shielding systems such as InkTag, Haven, and Virtual Ghost protect sensitive application data from compromised OS kernels. However, such systems are still vulnerable to side-channel attacks. Worse yet, compromised OS kernels can leverage their control over privileged hardware state to exacerbate existing side channels; recent work has shown that a compromised OS kernel can steal entire documents via side channels. This paper presents defenses against page table and last-level cache (LLC) side-channel attacks launched by a compromised OS kernel. Our page table defenses restrict the OS kernel’s ability to read and write page table pages and defend against page allocation attacks, and our LLC defenses utilize the Intel Cache Allocation Technology along with memory isolation primitives. We proto- type our solution in a system we call Apparition, building on an optimized version of Virtual Ghost. Our evaluation shows that our side-channel defenses add 1% to 18% (with up to 86% for one application) overhead to the optimized Virtual Ghost (relative to the native kernel) on real-world applications. 
    more » « less
  2. Last-Level Cache (LLC) attacks typically exploit timing side channels in hardware, and thus rely heavily on timers for their operation. Many proposed defenses against such side-channel attacks capitalize on this reliance. This paper presents PRIME+ABORT, a new cache attack which bypasses these defenses by not depending on timers for its function. Instead of a timing side channel, PRIME+ABORT leverages the Intel TSX hardware widely available in both server- and consumer-grade processors. This work shows that PRIME+ABORT is not only invulnerable to important classes of defenses, it also outperforms state-of-the-art LLC PRIME+PROBE attacks in both accuracy and efficiency, having a maximum detection speed (in events per second) 3× higher than LLC PRIME+PROBE on Intel’s Skylake architecture while producing fewer false positives. 
    more » « less
  3. Website fingerprinting attacks, which use statistical analysis on network traffic to compromise user privacy, have been shown to be effective even if the traffic is sent over anonymity-preserving networks such as Tor. The classical attack model used to evaluate website fingerprinting attacks assumes an on-path adversary, who can observe all traffic traveling between the user’s computer and the secure network. In this work we investigate these attacks under a different attack model, in which the adversary is capable of sending a small amount of malicious JavaScript code to the target user’s computer. The malicious code mounts a cache side-channel attack, which exploits the effects of contention on the CPU’s cache, to identify other websites being browsed. The effectiveness of this attack scenario has never been systematically analyzed, especially in the open-world model which assumes that the user is visiting a mix of both sensitive and non-sensitive sites. We show that cache website fingerprinting attacks in JavaScript are highly feasible. Specifically, we use machine learning techniques to classify traces of cache activity. Unlike prior works, which try to identify cache conflicts, our work measures the overall occupancy of the last-level cache. We show that our approach achieves high classification accuracy in both the open-world and the closed-world models. We further show that our attack is more resistant than network-based fingerprinting to the effects of response caching, and that our techniques are resilient both to network-based defenses and to side-channel countermeasures introduced to modern browsers as a response to the Spectre attack. To protect against cache-based website fingerprinting, new defense mechanisms must be introduced to privacy-sensitive browsers and websites. We investigate one such mechanism, and show that generating artificial cache activity reduces the effectiveness of the attack and completely eliminates it when used in the Tor Browser 
    more » « less
  4. null (Ed.)
    Cache side-channel attacks aim to breach the confidentiality of a computer system and extract sensitive secrets through CPU caches. In the past years, different types of side-channel attacks targeting a variety of cache architectures have been demonstrated. Meanwhile, different defense methods and systems have also been designed to mitigate these attacks. However, quantitatively evaluating the effectiveness of these attacks and defenses has been challenging. We propose a generic approach to evaluating cache side-channel attacks and defenses. Specifically, our method builds a deep neural network with its inputs as the adversary's observed information, and its outputs as the victim's execution traces. By training the neural network, the relationship between the inputs and outputs can be automatically discovered. As a result, the prediction accuracy of the neural network can serve as a metric to quantify how much information the adversary can obtain correctly, and how effective a defense solution is in reducing the information leakage under different attack scenarios. Our evaluation suggests that the proposed method can effectively evaluate different attacks and defenses. 
    more » « less
  5. With the ever-increasing virtualization of software and hardware, the privacy of user-sensitive data is a fundamental concern in computation outsourcing. Secure processors enable a trusted execution environment to guarantee security properties based on the principles of isolation, sealing, and integrity. However, the shared hardware resources within the microarchitecture are increasingly being used by co-located adversarial software to create timing-based side-channel attacks. State-of-the-art secure processors implement the strong isolation primitive to enable non-interference for shared hardware, but suffer from frequent state purging and resource utilization overheads, leading to degraded performance. This paper proposes ASM , an adaptive secure multicore architecture that enables a reconfigurable, yet strongly isolated execution environment. For outsourced security-critical processes, the proposed security kernel and hardware extensions allow either a given process to execute using all available cores, or co-execute multiple processes on strongly isolated clusters of cores. This spatio-temporal execution environment is configured based on resource demands of processes, such that the secure processor mitigates state purging overheads and maximizes hardware resource utilization. 
    more » « less