skip to main content


Title: Patterns of reproduction and autozygosity distinguish the breeding from nonbreeding gray wolves of Yellowstone National Park
Abstract

For species of management concern, accurate estimates of inbreeding and associated consequences on reproduction are crucial for predicting their future viability. However, few studies have partitioned this aspect of genetic viability with respect to reproduction in a group-living social mammal. We investigated the contributions of foundation stock lineages, putative fitness consequences of inbreeding, and genetic diversity of the breeding versus nonreproductive segment of the Yellowstone National Park gray wolf population. Our dataset spans 25 years and seven generations since reintroduction, encompassing 152 nuclear families and 329 litters. We found more than 87% of the pedigree foundation genomes persisted and report influxes of allelic diversity from two translocated wolves from a divergent source in Montana. As expected for group-living species, mean kinship significantly increased over time but with minimal loss of observed heterozygosity. Strikingly, the reproductive portion of the population carried a significantly lower genome-wide inbreeding coefficients, autozygosity, and more rapid decay for linkage disequilibrium relative to the nonbreeding population. Breeding wolves had significantly longer lifespans and lower inbreeding coefficients than nonbreeding wolves. Our model revealed that the number of litters was negatively significantly associated with heterozygosity (R = −0.11). Our findings highlight genetic contributions to fitness, and the importance of the reproductively active individuals in a population to counteract loss of genetic variation in a wild, free-ranging social carnivore. It is crucial for managers to mitigate factors that significantly reduce effective population size and genetic connectivity, which supports the dispersion of genetic variation that aids in rapid evolutionary responses to environmental challenges.

 
more » « less
NSF-PAR ID:
10472588
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Heredity
ISSN:
0022-1503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Aggression is a quantitative trait deeply entwined with individual fitness. Mapping the genomic architecture underlying such traits is complicated by complex inheritance patterns, social structure, pedigree information and gene pleiotropy. Here, we leveraged the pedigree of a reintroduced population of grey wolves (Canis lupus) in Yellowstone National Park, Wyoming, USA, to examine the heritability of and the genetic variation associated with aggression. Since their reintroduction, many ecological and behavioural aspects have been documented, providing unmatched records of aggressive behaviour across multiple generations of a wild population of wolves. Using a linear mixed model, a robust genetic relationship matrix, 12,288 single nucleotide polymorphisms (SNPs) and 111 wolves, we estimated the SNP‐based heritability of aggression to be 37% and an additional 14% of the phenotypic variation explained by shared environmental exposures. We identified 598 SNP genotypes from 425 grey wolves to resolve a consensus pedigree that was included in a heritability analysis of 141 individuals with SNP genotype, metadata and aggression data. The pedigree‐based heritability estimate for aggression is 14%, and an additional 16% of the phenotypic variation was explained by shared environmental exposures. We find strong effects of breeding status and relative pack size on aggression. Through an integrative approach, these results provide a framework for understanding the genetic architecture of a complex trait that influences individual fitness, with linkages to reproduction, in a social carnivore. Along with a few other studies, we show here the incredible utility of a pedigreed natural population for dissecting a complex, fitness‐related behavioural trait.

     
    more » « less
  2. Purugganan, Michael (Ed.)
    Abstract The deleterious effects of inbreeding have been of extreme importance to evolutionary biology, but it has been difficult to characterize the complex interactions between genetic constraints and selection that lead to fitness loss and recovery after inbreeding. Haploid organisms and selfing organisms like the nematode Caenorhabditis elegans are capable of rapid recovery from the fixation of novel deleterious mutation; however, the potential for recovery and genomic consequences of inbreeding in diploid, outcrossing organisms are not well understood. We sought to answer two questions: 1) Can a diploid, outcrossing population recover from inbreeding via standing genetic variation and new mutation? and 2) How does allelic diversity change during recovery? We inbred C. remanei, an outcrossing relative of C. elegans, through brother-sister mating for 30 generations followed by recovery at large population size. Inbreeding reduced fitness but, surprisingly, recovery from inbreeding at large populations sizes generated only very moderate fitness recovery after 300 generations. We found that 65% of ancestral single nucleotide polymorphisms (SNPs) were fixed in the inbred population, far fewer than the theoretical expectation of ∼99%. Under recovery, 36 SNPs across 30 genes involved in alimentary, muscular, nervous, and reproductive systems changed reproducibly across replicates, indicating that strong selection for fitness recovery does exist. Our results indicate that recovery from inbreeding depression via standing genetic variation and mutation is likely to be constrained by the large number of segregating deleterious variants present in natural populations, limiting the capacity for recovery of small populations. 
    more » « less
  3. Abstract

    Infectious diseases can cause steep declines in wildlife populations, leading to changes in genetic diversity that may affect the susceptibility of individuals to infection and the overall resilience of populations to pathogen outbreaks. Here, we examine evidence for a genetic bottleneck in a population of American crows (Corvus brachyrhynchos) before and after the emergence of West Nile virus (WNV). More than 50% of marked birds in this population were lost over the 2‐year period of the epizootic, representing a 10‐fold increase in adult mortality. Using analyses of single‐nucleotide polymorphisms (SNPs) and microsatellite markers, we tested for evidence of a genetic bottleneck and compared levels of inbreeding and immigration in the pre‐ and post‐WNV populations. Counter to expectations, genetic diversity (allelic diversity and the number of new alleles) increased after WNV emergence. This was likely due to increases in immigration, as the estimated membership coefficients were lower in the post‐WNV population. Simultaneously, however, the frequency of inbreeding appeared to increase: Mean inbreeding coefficients were higher among SNP markers, and heterozygosity–heterozygosity correlations were stronger among microsatellite markers, in the post‐WNV population. These results indicate that loss of genetic diversity at the population level is not an inevitable consequence of a population decline, particularly in the presence of gene flow. The changes observed in post‐WNV crows could have very different implications for their response to future pathogen risks, potentially making the population as a whole more resilient to a changing pathogen community, while increasing the frequency of inbred individuals with elevated susceptibility to disease.

     
    more » « less
  4. INTRODUCTION The Anthropocene is marked by an accelerated loss of biodiversity, widespread population declines, and a global conservation crisis. Given limited resources for conservation intervention, an approach is needed to identify threatened species from among the thousands lacking adequate information for status assessments. Such prioritization for intervention could come from genome sequence data, as genomes contain information about demography, diversity, fitness, and adaptive potential. However, the relevance of genomic data for identifying at-risk species is uncertain, in part because genetic variation may reflect past events and life histories better than contemporary conservation status. RATIONALE The Zoonomia multispecies alignment presents an opportunity to systematically compare neutral and functional genomic diversity and their relationships to contemporary extinction risk across a large sample of diverse mammalian taxa. We surveyed 240 species spanning from the “Least Concern” to “Critically Endangered” categories, as published in the International Union for Conservation of Nature’s Red List of Threatened Species. Using a single genome for each species, we estimated historical effective population sizes ( N e ) and distributions of genome-wide heterozygosity. To estimate genetic load, we identified substitutions relative to reconstructed ancestral sequences, assuming that mutations at evolutionarily conserved sites and in protein-coding sequences, especially in genes essential for viability in mice, are predominantly deleterious. We examined relationships between the conservation status of species and metrics of heterozygosity, demography, and genetic load and used these data to train and test models to distinguish threatened from nonthreatened species. RESULTS Species with smaller historical N e are more likely to be categorized as at risk of extinction, suggesting that demography, even from periods more than 10,000 years in the past, may be informative of contemporary resilience. Species with smaller historical N e also carry proportionally higher burdens of weakly and moderately deleterious alleles, consistent with theoretical expectations of the long-term accumulation and fixation of genetic load under strong genetic drift. We found weak support for a causative link between fixed drift load and extinction risk; however, other types of genetic load not captured in our data, such as rare, highly deleterious alleles, may also play a role. Although ecological (e.g., physiological, life-history, and behavioral) variables were the best predictors of extinction risk, genomic variables nonrandomly distinguished threatened from nonthreatened species in regression and machine learning models. These results suggest that information encoded within even a single genome can provide a risk assessment in the absence of adequate ecological or population census data. CONCLUSION Our analysis highlights the potential for genomic data to rapidly and inexpensively gauge extinction risk by leveraging relationships between contemporary conservation status and genetic variation shaped by the long-term demographic history of species. As more resequencing data and additional reference genomes become available, estimates of genetic load, estimates of recent demographic history, and accuracy of predictive models will improve. We therefore echo calls for including genomic information in assessments of the conservation status of species. Genomic information can help predict extinction risk in diverse mammalian species. Across 240 mammals, species with smaller historical N e had lower genetic diversity, higher genetic load, and were more likely to be threatened with extinction. Genomic data were used to train models that predict whether a species is threatened, which can be valuable for assessing extinction risk in species lacking ecological or census data. [Animal silhouettes are from PhyloPic] 
    more » « less
  5. Abstract

    Genetic and genomic data are increasingly used to aid conservation management of endangered species by providing insights into evolutionary histories, factors associated with extinction risks, and potential for future adaptation. For the ‘Alalā, or Hawaiian crow (Corvus hawaiiensis), genetic concerns include negative correlations between inbreeding and hatching success. However, it is unclear if low genetic diversity and inbreeding depression are consequences of a historical population bottleneck, or if ‘Alalā had historically low genetic diversity that predated human influence, perhaps as a result of earlier declines or founding events. In this study, we applied a hybridization-based sequence capture to generate a genome-wide single nucleotide polymorphism (SNP) dataset for comparing historical specimens collected in the 1890s, when ‘Alalā were more numerous, to samples taken between 1973 and 1998, when ‘Alalā population densities were near the lowest documented levels in the wild, prior to all individuals being collected for captive rearing. We found low genome-wide diversity in both sample groups, however, the modern sample group (1973 to 1998 cohort) exhibited relatively fewer polymorphic alleles, a lower proportion of polymorphic loci, and lower observed heterozygosity, consistent with a population decline and potential bottleneck effects. These results combined with a current low population size highlight the importance of continued efforts by conservation managers to mitigate inbreeding and maintain founder representation to preserve what genetic diversity remains.

     
    more » « less