skip to main content


This content will become publicly available on June 1, 2024

Title: Promoting students’ self-regulated learning choices with diagrams in intelligent tutoring software
Although students’ self-regulated learning has been studied extensively, past research has not investigated students’ fine-grained, self regulated choice-making processes during learning with visual representations and strategies to support such processes. We conducted design and experimental studies with 148 students to develop and evaluate an intervention package for supporting students’ self-regulated choice-making in using diagrammatic scaffolding in algebra tutoring software. A classroom experiment showed that students with the intervention learned greater conceptual and procedural knowledge in algebra than students in the control condition whose choices were not supported. Also, students with the intervention chose to use diagrams less frequently overall but showed distinctive use patterns that changed over time, indicating a form of self-regulated diagram use. This study demonstrates the importance of understanding and supporting choice behaviors that change over time during learning, going beyond simply measuring the frequency of choice behaviors and encouraging students to engage in these behaviors more frequently.  more » « less
Award ID(s):
1760922
NSF-PAR ID:
10472810
Author(s) / Creator(s):
; ; ; ;
Corporate Creator(s):
Editor(s):
Blikstein, P.; Van Aalst, J.; Kizito, R.; & Brennan, K.
Publisher / Repository:
Proceedings of the 17th International Conference of the Learning Sciences - ICLS 2023
Date Published:
Journal Name:
Proceedings of the 17th International Conference of the Learning Sciences - ICLS 2023
Edition / Version:
17
Page Range / eLocation ID:
593-600
Subject(s) / Keyword(s):
["self-regulated learning","learning with visual representations","diagrammatic scaffolding","algebra tutoring software","classroom study","supporting choice behaviors"]
Format(s):
Medium: X
Location:
Montreal
Sponsoring Org:
National Science Foundation
More Like this
  1. Although students’ self-regulated learning has been studied extensively, past research has not investigated students’ fine-grained, self-regulated choice-making processes during learning with visual representations and strategies to support such processes. We conducted design and experimental studies with 148 students to develop and evaluate an intervention package for supporting students’ self-regulated choice-making in using diagrammatic scaffolding in algebra tutoring software. A classroom experiment showed that students with the intervention learned greater conceptual and procedural knowledge in algebra than students in the control condition whose choices were not supported. Also, students with the intervention chose to use diagrams less frequently overall but showed distinctive use patterns that changed over time, indicating a form of self-regulated diagram use. This study demonstrates the importance of understanding and supporting choice behaviors that change over time during learning, going beyond simply measuring the frequency of choice behaviors and encouraging students to engage in these behaviors more frequently. 
    more » « less
  2. Chinn, C. ; Tan, E. ; Chan, C. ; Kali, Y. (Ed.)
    Learners’ choices as to whether and how to use visual representations during learning are an important yet understudied aspect of self-regulated learning. To gain insight, we developed a choice-based intelligent tutor in which students can choose whether and when to use diagrams to aid their problem solving in algebra. In an exploratory classroom study with 26 students, we investigated how learners choose diagrams and how their choice behaviors relate to learning outcomes. Students who proactively chose to use diagrams achieved higher learning outcomes than those who reactively used diagrams when they made incorrect attempts. This study contributes to understanding of self-regulated use of visual representations during problem solving. 
    more » « less
  3. Chinn, C. ; Tan, E. ; Chao, C. ; Kali, Y. (Ed.)
    Learners’ choices as to whether and how to use visual representations during learning are an important yet understudied aspect of self-regulated learning. To gain insight, we developed a choice-based intelligent tutor in which students can choose whether and when to use diagrams to aid their problem solving in algebra. In an exploratory classroom study with 26 students, we investigated how learners choose diagrams and how their choice behaviors relate to learning outcomes. Students who proactively chose to use diagrams achieved higher learning outcomes than those who reactively used diagrams when they made incorrect attempts. This study contributes to understanding of self-regulated use of visual representations during problem solving. 
    more » « less
  4. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  5. Self-regulated learning conducted through metacognitive monitoring and scientific inquiry can be influenced by many factors, such as emotions and motivation, and are necessary skills needed to engage in efficient hypothesis testing during game-based learning. Although many studies have investigated metacognitive monitoring and scientific inquiry skills during game-based learning, few studies have investigated how the sequence of behaviors involved during hypothesis testing with game-based learning differ based on both efficiency level and emotions during gameplay. For this study, we analyzed 59 undergraduate students’ (59% female) metacognitive monitoring and hypothesis testing behavior during learning and gameplay with CRYSTAL ISLAND, a game-based learning environment that teaches students about microbiology. Specifically, we used sequential pattern mining and differential sequence mining to determine if there were sequences of hypothesis testing behaviors and to determine if the frequencies of occurrence of these sequences differed between high or low levels of efficiency at finishing the game and high or low levels of facial expressions of emotions during gameplay. Results revealed that students with low levels of efficiency and high levels of facial expressions of emotions had the most sequences of testing behaviors overall, specifically engaging in more sequences that were indicative of less strategic hypothesis testing behavior than the other students, where students who were more efficient with both levels of emotions demonstrated strategic testing behavior. These results have implications for the strengths of using educational data mining techniques for determining the processes underlying patterns of engaging in self-regulated learning conducted through hypothesis testing as they unfold over time; for training students on how to engage in the self-regulation, scientific inquiry, and emotion regulation processes that can result in efficient gameplay; and for developing adaptive game-based learning environments that foster effective and efficient self-regulation and scientific inquiry during learning. 
    more » « less