skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seeding the CGM: how satellites populate the cold phase of milky way haloes
ABSTRACT The origin of the cold phase in the circumgalactic medium (CGM) is a highly debated question. We investigate the contribution of satellite galaxies to the cold gas budget in the CGM of a Milky Way-like host galaxy. We perform controlled experiments with three different satellite mass distributions and identify several mechanisms by which satellites can add cold gas to the CGM, including ram pressure stripping and induced cooling in the mixing layer of the stripped cold gas. These two mechanisms contribute a comparable amount of cold gas to the host CGM. We find that the less massive satellites (≤109M⊙) not only lose all of their cold gas in a short period (∼ 0.5–1 Gyr), but their stripped cold clouds also mix with the hot CGM gas and get heated up quickly. However, stellar feedback from these less massive satellites can hugely alter the fate of their stripped gas. Feedback speeds up the destruction of the stripped cold clouds from these satellites by making them more diffuse with more surface area. On the other hand, the more massive satellites (LMC or SMC-like ∼1010M⊙) can add cold gas to the total gas budget of the host CGM for several Gyr.  more » « less
Award ID(s):
2307327 2108230
PAR ID:
10472832
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 265-280
Size(s):
p. 265-280
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We investigate the case for environmental quenching of the Fornax-mass satellite DDO 113, which lies only 9 kpc in projection from its host, the Large-Magellanic-Cloud-mass galaxy NGC 4214. DDO 113 was quenched about 1 Gyr ago and is virtually gas-free, while analogs in the field are predominantly star-forming and gas-rich. We use deep imaging obtained with the Large Binocular Telescope to show that DDO 113 exhibits no evidence of tidal disruption to a surface brightness of μV ∼ 29 mag arcsec−2, based on both unresolved emission and resolved stars. Mass-analogs of DDO 113 in Illustris-1 with similar hosts, small projected separations, and no significant tidal stripping first fell into their host halo 2–6 Gyr ago, showing that tidal features (or lack thereof) can be used to constrain infall times in systems where there are few other constraints on the orbit of the satellite. With the infall time setting the clock for environmental quenching mechanisms, we investigate the plausibility of several such mechanisms. We find that strangulation, the cessation of cold gas inflows, is likely the dominant quenching mechanism for DDO 113, requiring a time-averaged mass-loading factor of η = 6–11 for star-formation-driven outflows that is consistent with theoretical and observational constraints. Motivated by recent numerical work, we connect DDO 113’s strangulation to the presence of a cool circumgalactic medium (CGM) around NGC 4214. This discovery shows that the CGM of low-mass galaxies can affect their satellites significantly and motivates further work on understanding the baryon cycle in low-mass galaxies. 
    more » « less
  2. null (Ed.)
    ABSTRACT We examine the prevalence, longevity, and causes of planes of satellite dwarf galaxies, as observed in the Local Group. We use 14 Milky Way/Andromeda-(MW/M31) mass host galaxies from the Feedback In Realistic Environments-2 simulations. We select the 14 most massive satellites by stellar mass within $$d_\mathrm{host}\le 300\mathrm{\, kpc}$$ of each host and correct for incompleteness from the foreground galactic disc when comparing to the MW. We find that MW-like planes as spatially thin and/or kinematically coherent as observed are uncommon, but they do exist in our simulations. Spatially thin planes occur in 1–2 per cent of snapshots during z = 0−0.2, and kinematically coherent planes occur in 5 per cent of snapshots. These planes are generally transient, surviving for <500 Myr. However, if we select hosts with a Large Magellanic Cloud-like satellite near first pericentre, the fraction of snapshots with MW-like planes increases dramatically to 7–16 per cent, with lifetimes of  0.7–1 Gyr, likely because of group accretion of satellites. We find that M31’s satellite distribution is much more common: M31’s satellites lie within ∼1σ of the simulation median for every plane metric we consider. We find no significant difference in average satellite planarity for isolated hosts versus hosts in LG-like pairs. Baryonic and dark matter-only simulations exhibit similar levels of planarity, even though baryonic subhaloes are less centrally concentrated within their host haloes. We conclude that planes of satellites are not a strong challenge to ΛCDM cosmology. 
    more » « less
  3. ABSTRACT We use a particle tracking analysis to study the origins of the circumgalactic medium (CGM), separating it into (1) accretion from the intergalactic medium (IGM), (2) wind from the central galaxy, and (3) gas ejected from other galaxies. Our sample consists of 21 FIRE-2 simulations, spanning the halo mass range Mh ∼ 1010–1012 M⊙, and we focus on z = 0.25 and z = 2. Owing to strong stellar feedback, only ∼L⋆ haloes retain a baryon mass $$\gtrsim\! 50\hbox{ per cent}$$ of their cosmic budget. Metals are more efficiently retained by haloes, with a retention fraction $$\gtrsim\! 50\hbox{ per cent}$$. Across all masses and redshifts analysed $$\gtrsim \!60\hbox{ per cent}$$ of the CGM mass originates as IGM accretion (some of which is associated with infalling haloes). Overall, the second most important contribution is wind from the central galaxy, though gas ejected or stripped from satellites can contribute a comparable mass in ∼L⋆ haloes. Gas can persist in the CGM for billions of years, resulting in well mixed-halo gas. Sightlines through the CGM are therefore likely to intersect gas of multiple origins. For low-redshift ∼L⋆ haloes, cool gas (T < 104.7 K) is distributed on average preferentially along the galaxy plane, however with strong halo-to-halo variability. The metallicity of IGM accretion is systematically lower than the metallicity of winds (typically by ≳1 dex), although CGM and IGM metallicities depend significantly on the treatment of subgrid metal diffusion. Our results highlight the multiple physical mechanisms that contribute to the CGM and will inform observational efforts to develop a cohesive picture. 
    more » « less
  4. ABSTRACT The star formation and gas content of satellite galaxies around the Milky Way (MW) and Andromeda (M31) are depleted relative to more isolated galaxies in the Local Group (LG) at fixed stellar mass. We explore the environmental regulation of gas content and quenching of star formation in z = 0 galaxies at $$M_{*}=10^{5\!-\!10}\, \rm {M}_{\odot }$$ around 14 MW-mass hosts from the Feedback In Realistic Environments 2 (FIRE-2) simulations. Lower mass satellites ($$M_{*}\lesssim 10^7\, \rm {M}_{\odot }$$) are mostly quiescent and higher mass satellites ($$M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$$) are mostly star forming, with intermediate-mass satellites ($$M_{*}\approx 10^{7\!-\!8}\, \rm {M}_{\odot }$$) split roughly equally between quiescent and star forming. Hosts with more gas in their circumgalactic medium have a higher quiescent fraction of massive satellites ($$M_{*}=10^{8\!-\!9}\, \rm {M}_{\odot }$$). We find no significant dependence on isolated versus paired (LG-like) host environments, and the quiescent fractions of satellites around MW-mass and Large Magellanic Cloud (LMC)-mass hosts from the FIRE-2 simulations are remarkably similar. Environmental effects that lead to quenching can also occur as pre-processing in low-mass groups prior to MW infall. Lower mass satellites typically quenched before MW infall as central galaxies or rapidly during infall into a low-mass group or a MW-mass galaxy. Most intermediate- to high-mass quiescent satellites have experienced ≥1–2 pericentre passages (≈2.5–5 Gyr) within a MW-mass halo. Most galaxies with $$M_{*}\gtrsim 10^{6.5}\, \rm {M}_{\odot }$$ did not quench before falling into a host, indicating a possible upper mass limit for isolated quenching. The simulations reproduce the average trend in the LG quiescent fraction across the full range of satellite stellar masses. Though the simulations are consistent with the Satellites Around Galactic Analogs (SAGA) survey’s quiescent fraction at $$M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$$, they do not generally reproduce SAGA’s turnover at lower masses. 
    more » « less
  5. Abstract We have imaged the entirety of eight (plus one partial) Milky Way (MW)–like satellite systems, a total of 42 (45) satellites, from the Satellites Around Galactic Analogs II catalog in both Hαand Hiwith the Canada–France–Hawaii Telescope and the Jansky Very Large Array. In these eight systems we have identified four cases where a satellite appears to be currently undergoing ram pressure stripping (RPS) as its Higas collides with the circumgalactic medium (CGM) of its host. We also see a clear suppression of gas fraction (MHI/M*) with decreasing (projected) satellite–host separation—to our knowledge, the first time this has been observed in a sample of MW-like systems. Comparisons to the Auriga, A Project Of Simulating The Local Environment, and TNG50 cosmological zoom-in simulations show consistent global behavior, but they systematically underpredict gas fractions across all satellites by roughly 0.5 dex. Using a simplistic RPS model, we estimate the average peak CGM density that satellites in these systems have encountered to be log ρ cgm / g cm 3 27.3 . Furthermore, we see tentative evidence that these satellites are following a specific star formation rate to gas fraction relation that is distinct from field galaxies. Finally, we detect one new gas-rich satellite in the UGC 903 system with an optical size and surface brightness meeting the standard criteria to be considered an ultra-diffuse galaxy. 
    more » « less