An electrical‐biased or mechanical‐loaded scanning probe written on the ferroelectric surface can generate programmable domain nanopatterns for ultra‐scaled and reconfigurable nanoscale electronics. Fabricating ferroelectric domain patterns by direct‐writing as quickly as possible is highly desirable for high response rate devices. Using monolayer
We show that the threshold for having a rainbow copy of a power of a Hamilton cycle in a randomly edge colored copy of is within a constant factor of the uncolored threshold. Our proof requires times the minimum number of colors.
more » « less- NSF-PAR ID:
- 10472915
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Graph Theory
- ISSN:
- 0364-9024
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract α ‐In2Se3ferroelectric with ≈1.2 nm thickness and intrinsic out‐of‐plane polarization as an example, a writing‐speed dependent effect on ferroelectric domain switching is discovered. The results indicate that the threshold voltages and threshold forces for domain switching can be increased from −4.2 to −5 V and from 365 to 1216 nN, respectively, as the writing‐speed increases from 2.2 to 10.6 µm s−1. The writing‐speed dependent threshold voltages can be attributed to the nucleations of reoriented ferroelectric domains, in which sufficient time is needed for subsequent domain growth. The writing‐speed dependent threshold forces can be attributed to the flexoelectric effect. Furthermore, the electrical‐mechanical coupling can be employed to decrease the threshold force, achieving as low as ≈189±41 nN, a value smaller than those of perovskite ferroelectric films. Such findings reveal a critical issue of ferroelectric domain pattern engineering that should be carefully addressed for programmable direct‐writing electronics applications. -
Abstract Development of continuous biopharmaceutical manufacturing processes is an area of active research. This study considers the long‐term transgene copy number stability of
Pichia pastoris in continuous bioreactors. We propose a model of copy number loss that quantifies population heterogeneity. An analytical solution is derived and compared with existing experimental data. The model is then used to provide guidance for stable operating timescales. The model is extended to consider copy number dependent growth such as in the case of Zeocin supplementation. The model is also extended to analyze a continuous seeding strategy. This study is a critical step towards understanding the impact of continuous processing on the stability ofPichia pastoris and the resultant products. -
Abstract Hydrophobins are small highly surface‐active fungal proteins with potential as biosurfactants in a wide array of applications. However, practical implementation of hydrophobins at large scale has been hindered by low recombinant yields. In this study, the effects of increasing hydrophobin gene copy number and overexpressing endoplasmic reticulum resident chaperone proteins Kar2p, Pdi1p, and Ero1p were explored as a means to enhance recombinant yields of the class II hydrophobin HFBI in the eukaryotic expression host
Pichia pastoris . One‐, 2‐, and 3‐copy‐HFBI strains were attained using an in vitro multimer ligation approach, with strains displaying copy number stability following subsequent transformations as measured by quantitative polymerase chain reaction. Increasing HFBI copy number alone had no effect on increasing HFBI secretion, but increasing copy number in concert with chaperone overexpression synergistically increased HFBI secretion. Overexpression ofPDI1 orERO1 caused insignificant changes in HFBI secretion in 1‐ and 2‐copy strains, but a statistically significant HFBI secretion increase in 3‐copy strain.KAR2 overexpression consistently resulted in enhanced HFBI secretion in all copy number strains, with 3‐copy‐HFBI secreting 22±1.6 fold more than the 1‐copy‐HFBI/no chaperone strain. The highest increase was seen in 3‐copy‐HFBI/Ero1p overexpressing strain with 30±4.0 fold increase in HFBI secretion over 1‐copy‐HFBI/no chaperone strain. This corresponded to an expression level of approximately 330 mg/L HFBI in the 5 ml small‐scale format used in this study. -
Abstract Discovery of new materials with enhanced optical properties in the visible and UV‐C range can impact applications in lasers, nonlinear optics, and quantum optics. Here, the optical floating zone growth of a family of rare earth borates,
R Ba3(B3O6)3(R = Nd, Sm, Tb, Dy, and Er), with promising linear and nonlinear optical (NLO) properties is reported. Although previously identified to be centrosymmetric, the X‐ray analysis combined with optical second harmonic generation (SHG) assigns the noncentrosymmetricP space group to these crystals. Characterization of linear optical properties reveals a direct bandgap of ≈5.61–5.72 eV and strong photoluminescence in both the visible and mid‐IR regions. Anisotropic linear and nonlinear optical characterization reveals both Type‐I and Type‐II SHG phase matchability, with the highest effective phase‐matched SHG coefficient of 1.2 pm V−1at 800‐nm fundamental wavelength (for DyBa3(B3O6)3), comparable to β‐BaB2O4(phase‐matchedd 22≈ 1.9 pm V−1). Laser‐induced surface damage threshold for these environmentally stable crystals is 650–900 GW cm−2, which is four to five times higher than that of β‐BaB2O4, thus providing an opportunity to pump with significantly higher power to generate about six to seven times stronger SHG light. Since the SHG arises from disorder on the Ba‐site, significantly larger SHG coefficients may be realized by “poling” the crystals to align the Ba displacements. These properties motivate further development of this crystal family for laser and wide bandgap NLO applications. -
Wheat, Christopher (Ed.)
Abstract The blackstripe livebearer Poeciliopsis prolifica is a live-bearing fish belonging to the family Poeciliidae with high level of postfertilization maternal investment (matrotrophy). This viviparous matrotrophic species has evolved a structure similarly to the mammalian placenta. Placentas have independently evolved multiple times in Poeciliidae from nonplacental ancestors, which provide an opportunity to study the placental evolution. However, there is a lack of high-quality reference genomes for the placental species in Poeciliidae. In this study, we present a 674 Mb assembly of P. prolifica in 504 contigs with excellent continuity (contig N50 7.7 Mb) and completeness (97.2% Benchmarking Universal Single-Copy Orthologs [BUSCO] completeness score, including 92.6% single-copy and 4.6% duplicated BUSCO score). A total of 27,227 protein-coding genes were annotated from the merged datasets based on bioinformatic prediction, RNA sequencing and homology evidence. Phylogenomic analyses revealed that P. prolifica diverged from the guppy (Poecilia reticulata) ∼19 Ma. Our research provides the necessary resources and the genomic toolkit for investigating the genetic underpinning of placentation.