skip to main content


Title: Software-defined meta-optics

Rapid advancements in autonomous systems and the Internet of Things have necessitated the development of compact and low-power image sensors to bridge the gap between the digital and physical world. To that end, sub-wavelength diffractive optics, commonly known as meta-optics, have garnered significant interest from the optics and photonics community due to their ability to achieve multiple functionalities within a small form factor. Despite years of research, however, the performance of meta-optics has often remained inferior compared to that of traditional refractive optics. In parallel, computational imaging techniques have emerged as a promising path to miniaturize optical systems, albeit often at the expense of higher power and latency. The lack of desired performance from either meta-optical or computational solutions has motivated researchers to look into a jointly optimized meta-optical–digital solution. While the meta-optical front end can preprocess the scene to reduce the computational load on the digital back end, the computational back end can in turn relax requirements on the meta-optics. In this Perspective, we provide an overview of this up-and-coming field, termed here as “software-defined meta-optics.” We highlight recent contributions that have advanced the current state of the art and point out directions toward which future research efforts should be directed to leverage the full potential of subwavelength photonic platforms in imaging and sensing applications. Synergistic technology transfer and commercialization of meta-optic technologies will pave the way for highly efficient, compact, and low-power imaging systems of the future.

 
more » « less
Award ID(s):
2120774
PAR ID:
10472938
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Applied Physics Letters
Volume:
123
Issue:
15
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Miniature varifocal lenses are crucial for many applications requiring compact optical systems. Here, utilizing electro-mechanically actuated 0.5-mm aperture infrared Alvarez meta-optics, we demonstrate 3.1 mm (200 diopters) focal length tuning with an actuation voltage below 40 V. This constitutes the largest focal length tuning in any low-power electro-mechanically actuated meta-optic, enabled by the high energy density in comb-drive actuators producing large displacements at relatively low voltage. The demonstrated device is produced by a novel nanofabrication process that accommodates meta-optics with a larger aperture and has improved alignment between meta-optics via flip-chip bonding. The whole fabrication process is CMOS compatible and amenable to high-throughput manufacturing. 
    more » « less
  2. Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurfacerelated papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this “golden age” of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption. 
    more » « less
  3. Abstract

    Light’s ability to perform massive linear operations in parallel has recently inspired numerous demonstrations of optics-assisted artificial neural networks (ANN). However, a clear system-level advantage of optics over purely digital ANN has not yet been established. While linear operations can indeed be optically performed very efficiently, the lack of nonlinearity and signal regeneration require high-power, low-latency signal transduction between optics and electronics. Additionally, a large power is needed for lasers and photodetectors, which are often neglected in the calculation of the total energy consumption. Here, instead of mapping traditional digital operations to optics, we co-designed a hybrid optical-digital ANN, that operates on incoherent light, and is thus amenable to operations under ambient light. Keeping the latency and power constant between a purely digital ANN and a hybrid optical-digital ANN, we identified a low-power/latency regime, where an optical encoder provides higher classification accuracy than a purely digital ANN. We estimate our optical encoder enables ∼10 kHz rate operation of a hybrid ANN with a power of only 23 mW. However, in that regime, the overall classification accuracy is lower than what is achievable with higher power and latency. Our results indicate that optics can be advantageous over digital ANN in applications, where the overall performance of the ANN can be relaxed to prioritize lower power and latency.

     
    more » « less
  4. Abstract

    Subwavelength diffractive optics known as meta-optics have demonstrated the potential to significantly miniaturize imaging systems. However, despite impressive demonstrations, most meta-optical imaging systems suffer from strong chromatic aberrations, limiting their utilities. Here, we employ inverse-design to create broadband meta-optics operating in the long-wave infrared (LWIR) regime (8-12μm). Via a deep-learning assisted multi-scale differentiable framework that links meta-atoms to the phase, we maximize the wavelength-averaged volume under the modulation transfer function (MTF) surface of the meta-optics. Our design framework merges local phase-engineering via meta-atoms and global engineering of the scatterer within a single pipeline. We corroborate our design by fabricating and experimentally characterizing all-silicon LWIR meta-optics. Our engineered meta-optic is complemented by a simple computational backend that dramatically improves the quality of the captured image. We experimentally demonstrate a six-fold improvement of the wavelength-averaged Strehl ratio over the traditional hyperboloid metalens for broadband imaging.

     
    more » « less
  5. null (Ed.)
    Most modern commodity imaging systems we use directly for photography—or indirectly rely on for downstream applications—employ optical systems of multiple lenses that must balance deviations from perfect optics, manufacturing constraints, tolerances, cost, and footprint. Although optical designs often have complex interactions with downstream image processing or analysis tasks, today’s compound optics are designed in isolation from these interactions. Existing optical design tools aim to minimize optical aberrations, such as deviations from Gauss’ linear model of optics, instead of application-specific losses, precluding joint optimization with hardware image signal processing (ISP) and highly parameterized neural network processing. In this article, we propose an optimization method for compound optics that lifts these limitations. We optimize entire lens systems jointly with hardware and software image processing pipelines, downstream neural network processing, and application-specific end-to-end losses. To this end, we propose a learned, differentiable forward model for compound optics and an alternating proximal optimization method that handles function compositions with highly varying parameter dimensions for optics, hardware ISP, and neural nets. Our method integrates seamlessly atop existing optical design tools, such as Zemax . We can thus assess our method across many camera system designs and end-to-end applications. We validate our approach in an automotive camera optics setting—together with hardware ISP post processing and detection—outperforming classical optics designs for automotive object detection and traffic light state detection. For human viewing tasks, we optimize optics and processing pipelines for dynamic outdoor scenarios and dynamic low-light imaging. We outperform existing compartmentalized design or fine-tuning methods qualitatively and quantitatively, across all domain-specific applications tested. 
    more » « less