In recent studies, researchers have developed various computation offloading frameworks for bringing cloud services closer to the user via edge networks. Specifically, an edge device needs to offload computationally intensive tasks because of energy and processing constraints. These constraints present the challenge of identifying which edge nodes should receive tasks to reduce overall resource consumption. We propose a unique solution to this problem which incorporates elements from Knowledge-Defined Networking (KDN) to make intelligent predictions about offloading costs based on historical data. Each server instance can be represented in a multidimensional feature space where each dimension corresponds to a predicted metric. We compute features for a "hyperprofile" and position nodes based on the predicted costs of offloading a particular task. We then perform a k-Nearest Neighbor (kNN) query within the hyperprofile to select nodes for offloading computation. This paper formalizes our hyperprofile-based solution and explores the viability of using machine learning (ML) techniques to predict metrics useful for computation offloading. We also investigate the effects of using different distance metrics for the queries. Our results show various network metrics can be modeled accurately with regression, and there are circumstances where kNN queries using Euclidean distance as opposed to rectilinear distance is more favorable.
more »
« less
Remedy or Resource Drain: Modeling and Analysis of Massive Task Offloading Processes in Fog
Abstract: Task offloading, which refers to processing (computation-intensive) data at facilitating servers, is an exemplary service that greatly benefits from the fog computing paradigm, which brings computation resources to the edge network for reduced application latency. However, the resource-consuming nature of task execution, as well as the sheer scale of IoT systems, raises an open and challenging question: whether fog is a remedy or a resource drain, considering frequent and massive offloading operations? This question is nontrivial, because participants of offloading processes, i.e., fog nodes, may have diversified technical specifications, while task generators, i.e., task nodes, may employ a variety of criteria to select offloading targets, resulting in an unmanageable space for performance evaluation. To overcome these challenges of heterogeneity, we propose a gravity model that characterizes offloading criteria with various gravity functions, in which individual/system resource consumption can be examined by the device/network effort metrics, respectively. Simulation results show that the proposed gravity model can flexibly describe different offloading schemes in terms of application and node-level behavior. We find that the expected lifetime and device effort of individual tasks decrease as O(1/N) over the network size N , while the network effort decreases much slower, even remain O(1) when load balancing measures are employed, indicating a possible resource drain in the edge network.
more »
« less
- Award ID(s):
- 1824518
- PAR ID:
- 10473108
- Publisher / Repository:
- IEEE Internet of Things
- Date Published:
- Journal Name:
- IEEE Internet of Things Journal
- Volume:
- 10
- Issue:
- 13
- ISSN:
- 2372-2541
- Page Range / eLocation ID:
- 11669 to 11682
- Subject(s) / Keyword(s):
- Internet of Things Fog Computing Performance
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Edge computing has enabled a large set of emerging edge applications by exploiting data proximity and offloading computation-intensive workloads to nearby edge servers. However, supporting edge application users at scale poses challenges due to limited point-of-presence edge sites and constrained elasticity. In this paper, we introduce a densely-distributed edge resource model that leverages capacity-constrained volunteer edge nodes to support elastic computation offloading. Our model also enables the use of geo-distributed edge nodes to further support elasticity. Collectively, these features raise the issue of edge selection. We present a distributed edge selection approach that relies on client-centric views of available edge nodes to optimize average end-to-end latency, with considerations of system heterogeneity, resource contention and node churn. Elasticity is achieved by fine-grained performance probing, dynamic load balancing, and proactive multi-edge node connections per client. Evaluations are conducted in both real-world volunteer environments and emulated platforms to show how a common edge application, namely AR-based cognitive assistance, can benefit from our approach and deliver low-latency responses to distributed users at scale.more » « less
-
Localization in urban environments is becoming increasingly important and used in tools such as ARCore [ 18 ], ARKit [ 34 ] and others. One popular mechanism to achieve accurate indoor localization and a map of the space is using Visual Simultaneous Localization and Mapping (Visual-SLAM). However, Visual-SLAM is known to be resource-intensive in memory and processing time. Furthermore, some of the operations grow in complexity over time, making it challenging to run on mobile devices continuously. Edge computing provides additional compute and memory resources to mobile devices to allow offloading tasks without the large latencies seen when offloading to the cloud. In this article, we present Edge-SLAM, a system that uses edge computing resources to offload parts of Visual-SLAM. We use ORB-SLAM2 [ 50 ] as a prototypical Visual-SLAM system and modify it to a split architecture between the edge and the mobile device. We keep the tracking computation on the mobile device and move the rest of the computation, i.e., local mapping and loop closing, to the edge. We describe the design choices in this effort and implement them in our prototype. Our results show that our split architecture can allow the functioning of the Visual-SLAM system long-term with limited resources without affecting the accuracy of operation. It also keeps the computation and memory cost on the mobile device constant, which would allow for the deployment of other end applications that use Visual-SLAM. We perform a detailed performance and resources use (CPU, memory, network, and power) analysis to fully understand the effect of our proposed split architecture.more » « less
-
Localization in urban environments is becoming increasingly important and used in tools such as ARCore [11], ARKit [27] and others. One popular mechanism to achieve accurate indoor localization as well as a map of the space is using Visual Simultaneous Localization and Mapping (Visual-SLAM). However, Visual-SLAM is known to be resource-intensive in memory and processing time. Further, some of the operations grow in complexity over time, making it challenging to run on mobile devices continuously. Edge computing provides additional compute and memory resources to mobile devices to allow offloading of some tasks without the large latencies seen when offloading to the cloud. In this paper, we present Edge-SLAM, a system that uses edge computing resources to offload parts of Visual-SLAM. We use ORB-SLAM2 as a prototypical Visual-SLAM system and modify it to a split architecture between the edge and the mobile device. We keep the tracking computation on the mobile device and move the rest of the computation, i.e., local mapping and loop closure, to the edge. We describe the design choices in this effort and implement them in our prototype. Our results show that our split architecture can allow the functioning of the Visual-SLAM system long-term with limited resources without affecting the accuracy of operation. It also keeps the computation and memory cost on the mobile device constant which would allow for deployment of other end applications that use Visual-SLAM.more » « less
-
Immersive applications such as Augmented Reality (AR) and Mixed Reality (MR) often need to perform multiple latency-critical tasks on every frame captured by the camera, which all require results to be available within the current frame interval. While such tasks are increasingly supported by Deep Neural Networks (DNNs) offloaded to edge servers due to their high accuracy but heavy computation, prior work has largely focused on offloading one task at a time. Compared to offloading a single task, where more frequent offloading directly translates into higher task accuracy, offloading of multiple tasks competes for shared edge server resources, and hence faces the additional challenge of balancing the offloading frequencies of different tasks to maximize the overall accuracy and hence app QoE. In this paper, we formulate this accuracy-centric multitask offloading problem, and present a framework that dynamically schedules the offloading of multiple DNN tasks from a mobile device to an edge server while optimizing the overall accuracy across tasks. Our design employs two novel ideas: (1) task-specific lightweight models that predict offloading accuracy drop as a function of offloading frequency and frame content, and (2) a general two-level control feedback loop that concurrently balances offloading among tasks and adapts between offloading and using local algorithms for each task. Evaluation results show that our framework improves the overall accuracy significantly in jointly offloading two core tasks in AR — depth estimation and odometry — by on average 7.6%–14.3% over the best baselines under different accuracy weight ratios.more » « less
An official website of the United States government
