skip to main content


This content will become publicly available on July 1, 2024

Title: Remedy or Resource Drain: Modeling and Analysis of Massive Task Offloading Processes in Fog
Abstract: Task offloading, which refers to processing (computation-intensive) data at facilitating servers, is an exemplary service that greatly benefits from the fog computing paradigm, which brings computation resources to the edge network for reduced application latency. However, the resource-consuming nature of task execution, as well as the sheer scale of IoT systems, raises an open and challenging question: whether fog is a remedy or a resource drain, considering frequent and massive offloading operations? This question is nontrivial, because participants of offloading processes, i.e., fog nodes, may have diversified technical specifications, while task generators, i.e., task nodes, may employ a variety of criteria to select offloading targets, resulting in an unmanageable space for performance evaluation. To overcome these challenges of heterogeneity, we propose a gravity model that characterizes offloading criteria with various gravity functions, in which individual/system resource consumption can be examined by the device/network effort metrics, respectively. Simulation results show that the proposed gravity model can flexibly describe different offloading schemes in terms of application and node-level behavior. We find that the expected lifetime and device effort of individual tasks decrease as O(1/N) over the network size N , while the network effort decreases much slower, even remain O(1) when load balancing measures are employed, indicating a possible resource drain in the edge network.  more » « less
Award ID(s):
1824518
NSF-PAR ID:
10473108
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE Internet of Things
Date Published:
Journal Name:
IEEE Internet of Things Journal
Volume:
10
Issue:
13
ISSN:
2372-2541
Page Range / eLocation ID:
11669 to 11682
Subject(s) / Keyword(s):
["Internet of Things","Fog Computing","Performance"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent studies, researchers have developed various computation offloading frameworks for bringing cloud services closer to the user via edge networks. Specifically, an edge device needs to offload computationally intensive tasks because of energy and processing constraints. These constraints present the challenge of identifying which edge nodes should receive tasks to reduce overall resource consumption. We propose a unique solution to this problem which incorporates elements from Knowledge-Defined Networking (KDN) to make intelligent predictions about offloading costs based on historical data. Each server instance can be represented in a multidimensional feature space where each dimension corresponds to a predicted metric. We compute features for a "hyperprofile" and position nodes based on the predicted costs of offloading a particular task. We then perform a k-Nearest Neighbor (kNN) query within the hyperprofile to select nodes for offloading computation. This paper formalizes our hyperprofile-based solution and explores the viability of using machine learning (ML) techniques to predict metrics useful for computation offloading. We also investigate the effects of using different distance metrics for the queries. Our results show various network metrics can be modeled accurately with regression, and there are circumstances where kNN queries using Euclidean distance as opposed to rectilinear distance is more favorable. 
    more » « less
  2. Localization in urban environments is becoming increasingly important and used in tools such as ARCore [ 18 ], ARKit [ 34 ] and others. One popular mechanism to achieve accurate indoor localization and a map of the space is using Visual Simultaneous Localization and Mapping (Visual-SLAM). However, Visual-SLAM is known to be resource-intensive in memory and processing time. Furthermore, some of the operations grow in complexity over time, making it challenging to run on mobile devices continuously. Edge computing provides additional compute and memory resources to mobile devices to allow offloading tasks without the large latencies seen when offloading to the cloud. In this article, we present Edge-SLAM, a system that uses edge computing resources to offload parts of Visual-SLAM. We use ORB-SLAM2 [ 50 ] as a prototypical Visual-SLAM system and modify it to a split architecture between the edge and the mobile device. We keep the tracking computation on the mobile device and move the rest of the computation, i.e., local mapping and loop closing, to the edge. We describe the design choices in this effort and implement them in our prototype. Our results show that our split architecture can allow the functioning of the Visual-SLAM system long-term with limited resources without affecting the accuracy of operation. It also keeps the computation and memory cost on the mobile device constant, which would allow for the deployment of other end applications that use Visual-SLAM. We perform a detailed performance and resources use (CPU, memory, network, and power) analysis to fully understand the effect of our proposed split architecture. 
    more » « less
  3. We are now over four decades into digitally managing the names of Earth's species. As the number of federating (i.e., software that brings together previously disparate projects under a common infrastructure, for example TaxonWorks) and aggregating (e.g., International Plant Name Index, Catalog of Life (CoL)) efforts increase, there remains an unmet need for both the migration forward of old data, and for the production of new, precise and comprehensive nomenclatural catalogs. Given this context, we provide an overview of how TaxonWorks seeks to contribute to this effort, and where it might evolve in the future. In TaxonWorks, when we talk about governed names and relationships, we mean it in the sense of existing international codes of nomenclature (e.g., the International Code of Zoological Nomenclature (ICZN)). More technically, nomenclature is defined as a set of objective assertions that describe the relationships between the names given to biological taxa and the rules that determine how those names are governed. It is critical to note that this is not the same thing as the relationship between a name and a biological entity, but rather nomenclature in TaxonWorks represents the details of the (governed) relationships between names. Rather than thinking of nomenclature as changing (a verb commonly used to express frustration with biological nomenclature), it is useful to think of nomenclature as a set of data points, which grows over time. For example, when synonymy happens, we do not erase the past, but rather record a new context for the name(s) in question. The biological concept changes, but the nomenclature (names) simply keeps adding up. Behind the scenes, nomenclature in TaxonWorks is represented by a set of nodes and edges, i.e., a mathematical graph, or network (e.g., Fig. 1). Most names (i.e., nodes in the network) are what TaxonWorks calls "protonyms," monomial epithets that are used to construct, for example, bionomial names (not to be confused with "protonym" sensu the ICZN). Protonyms are linked to other protonyms via relationships defined in NOMEN, an ontology that encodes governed rules of nomenclature. Within the system, all data, nodes and edges, can be cited, i.e., linked to a source and therefore anchored in time and tied to authorship, and annotated with a variety of annotation types (e.g., notes, confidence levels, tags). The actual building of the graphs is greatly simplified by multiple user-interfaces that allow scientists to review (e.g. Fig. 2), create, filter, and add to (again, not "change") the nomenclatural history. As in any complex knowledge-representation model, there are outlying scenarios, or edge cases that emerge, making certain human tasks more complex than others. TaxonWorks is no exception, it has limitations in terms of what and how some things can be represented. While many complex representations are hidden by simplified user-interfaces, some, for example, the handling of the ICZN's Family-group name, batch-loading of invalid relationships, and comparative syncing against external resources need more work to simplify the processes presently required to meet catalogers' needs. The depth at which TaxonWorks can capture nomenclature is only really valuable if it can be used by others. This is facilitated by the application programming interface (API) serving its data (https://api.taxonworks.org), serving text files, and by exports to standards like the emerging Catalog of Life Data Package. With reference to real-world problems, we illustrate different ways in which the API can be used, for example, as integrated into spreadsheets, through the use of command line scripts, and serve in the generation of public-facing websites. Behind all this effort are an increasing number of people recording help videos, developing documentation, and troubleshooting software and technical issues. Major contributions have come from developers at many skill levels, from high school to senior software engineers, illustrating that TaxonWorks leads in enabling both technical and domain-based contributions. The health and growth of this community is a key factor in TaxonWork's potential long-term impact in the effort to unify the names of Earth's species. 
    more » « less
  4. Localization in urban environments is becoming increasingly important and used in tools such as ARCore [11], ARKit [27] and others. One popular mechanism to achieve accurate indoor localization as well as a map of the space is using Visual Simultaneous Localization and Mapping (Visual-SLAM). However, Visual-SLAM is known to be resource-intensive in memory and processing time. Further, some of the operations grow in complexity over time, making it challenging to run on mobile devices continuously. Edge computing provides additional compute and memory resources to mobile devices to allow offloading of some tasks without the large latencies seen when offloading to the cloud. In this paper, we present Edge-SLAM, a system that uses edge computing resources to offload parts of Visual-SLAM. We use ORB-SLAM2 as a prototypical Visual-SLAM system and modify it to a split architecture between the edge and the mobile device. We keep the tracking computation on the mobile device and move the rest of the computation, i.e., local mapping and loop closure, to the edge. We describe the design choices in this effort and implement them in our prototype. Our results show that our split architecture can allow the functioning of the Visual-SLAM system long-term with limited resources without affecting the accuracy of operation. It also keeps the computation and memory cost on the mobile device constant which would allow for deployment of other end applications that use Visual-SLAM. 
    more » « less
  5. Edge computing has enabled a large set of emerging edge applications by exploiting data proximity and offloading computation-intensive workloads to nearby edge servers. However, supporting edge application users at scale poses challenges due to limited point-of-presence edge sites and constrained elasticity. In this paper, we introduce a densely-distributed edge resource model that leverages capacity-constrained volunteer edge nodes to support elastic computation offloading. Our model also enables the use of geo-distributed edge nodes to further support elasticity. Collectively, these features raise the issue of edge selection. We present a distributed edge selection approach that relies on client-centric views of available edge nodes to optimize average end-to-end latency, with considerations of system heterogeneity, resource contention and node churn. Elasticity is achieved by fine-grained performance probing, dynamic load balancing, and proactive multi-edge node connections per client. Evaluations are conducted in both real-world volunteer environments and emulated platforms to show how a common edge application, namely AR-based cognitive assistance, can benefit from our approach and deliver low-latency responses to distributed users at scale. 
    more » « less