skip to main content


Title: Hunting behavior and feeding ecology of Mojave rattlesnakes ( Crotalus scutulatus ), prairie rattlesnakes ( Crotalus viridis ), and their hybrids in southwestern New Mexico
Abstract

Predators must contend with numerous challenges to successfully find and subjugate prey. Complex traits related to hunting are partially controlled by a large number of co‐evolved genes, which may be disrupted in hybrids. Accordingly, research on the feeding ecology of animals in hybrid zones has shown that hybrids sometimes exhibit transgressive or novel behaviors, yet for many taxa, empirical studies of predation and diet across hybrid zones are lacking. We undertook the first such field study for a hybrid zone between two snake species, the Mojave rattlesnake (Crotalus scutulatus) and the prairie rattlesnake (Crotalus viridis). Specifically, we leveraged established field methods to quantify the hunting behaviors of animals, their prey communities, and the diet of individuals across the hybrid zone in southwestern New Mexico, USA. We found that, even though hybrids had significantly lower body condition indices than snakes from either parental group, hybrids were generally similar to non‐hybrids in hunting behavior, prey encounter rates, and predatory attack and success. We also found that, compared toC. scutulatus,C. viridiswas significantly more active while hunting at night and abandoned ambush sites earlier in the morning, and hybrids tended to be moreviridis‐like in this respect. Prey availability was similar across the study sites, including within the hybrid zone, with kangaroo rats (Dipodomysspp.) as the most common small mammal, both in habitat surveys and the frequency of encounters with hunting rattlesnakes. Analysis of prey remains in stomachs and feces also showed broad similarity in diets, with all snakes preying primarily on small mammals and secondarily on lizards. Taken together, our results suggest that the significantly lower body condition of hybrids does not appear to be driven by differences in their hunting behavior or diet and may instead relate to metabolic efficiency or other physiological traits we have not yet identified.

 
more » « less
NSF-PAR ID:
10473158
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
13
Issue:
11
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ontogenetic changes in venom composition have important ecological implications due the relevance of venom in prey acquisition and defense. Additionally, intraspecific venom variation has direct medical consequences for the treatment of snakebite. However, ontogenetic changes are not well documented in most species. The Mexican Black-tailed Rattlesnake (Crotalus molossus nigrescens) is large-bodied and broadly distributed in Mexico. To document venom variation and test for ontogenetic changes in venom composition, we obtained venom samples from twenty-seven C. m. nigrescens with different total body lengths (TBL) from eight states in Mexico. The primary components in the venom were detected by reverse-phase HPLC, western blot, and mass spectrometry. In addition, we evaluated the biochemical (proteolytic, coagulant and fibrinogenolytic activities) and biological (LD50 and hemorrhagic activity) activities of the venoms. Finally, we tested for recognition and neutralization of Mexican antivenoms against venoms of juvenile and adult snakes. We detected clear ontogenetic venom variation in C. m. nigrescens. Venoms from younger snakes contained more crotamine-like myotoxins and snake venom serine proteinases than venoms from older snakes; however, an increase of snake venom metalloproteinases was detected in venoms of larger snakes. Venoms from juvenile snakes were, in general, more toxic and procoagulant than venoms from adults; however, adult venoms were more proteolytic. Most of the venoms analyzed were hemorrhagic. Importantly, Mexican antivenoms had difficulties recognizing low molecular mass proteins (<12 kDa) of venoms from both juvenile and adult snakes. The antivenoms did not neutralize the crotamine effect caused by the venom of juveniles. Thus, we suggest that Mexican antivenoms would have difficulty neutralizing some human envenomations and, therefore, it may be necessary improve the immunization mixture in Mexican antivenoms to account for low molecular mass proteins, like myotoxins. 
    more » « less
  2. Abstract Background Many snakes are low-energy predators that use crypsis to ambush their prey. Most of these species feed very infrequently, are sensitive to the presence of larger vertebrates, such as humans, and spend large portions of their lifetime hidden. This makes direct observation of feeding behaviour challenging, and previous methodologies developed for documenting predation behaviours of free-ranging snakes have critical limitations. Animal-borne accelerometers have been increasingly used by ecologists to quantify activity and moment-to-moment behaviour of free ranging animals, but their application in snakes has been limited to documenting basic behavioural states (e.g., active vs. non-active). High-frequency accelerometry can provide new insight into the behaviour of this important group of predators, and here we propose a new method to quantify key aspects of the feeding behaviour of three species of viperid snakes ( Crotalus spp.) and assess the transferability of classification models across those species. Results We used open-source software to create species-specific models that classified locomotion, stillness, predatory striking, and prey swallowing with high precision, accuracy, and recall. In addition, we identified a low cost, reliable, non-invasive attachment method for accelerometry devices to be placed anteriorly on snakes, as is likely necessary for accurately classifying distinct behaviours in these species. However, species-specific models had low transferability in our cross-species comparison. Conclusions Overall, our study demonstrates the strong potential for using accelerometry to document critical feeding behaviours in snakes that are difficult to observe directly. Furthermore, we provide an ‘end-to-end’ template for identifying important behaviours involved in the foraging ecology of viperids using high-frequency accelerometry. We highlight a method of attachment of accelerometers, a technique to simulate feeding events in captivity, and a model selection procedure using biologically relevant window sizes in an open-access software for analyzing acceleration data (AcceleRater). Although we were unable to obtain a generalized model across species, if more data are incorporated from snakes across different body sizes and different contexts (i.e., moving through natural habitat), general models could potentially be developed that have higher transferability. 
    more » « less
  3. ABSTRACT Movements of ectotherms are constrained by their body temperature owing to the effects of temperature on muscle physiology. As physical performance often affects the outcome of predator–prey interactions, environmental temperature can influence the ability of ectotherms to capture prey and/or defend themselves against predators. However, previous research on the kinematics of ectotherms suggests that some species may use elastic storage mechanisms when attacking or defending, thereby mitigating the effects of sub-optimal temperature. Rattlesnakes ( Crotalus spp.) are a speciose group of ectothermic viperid snakes that rely on crypsis, rattling and striking to deter predators. We examined the influence of body temperature on the behavior and kinematics of two rattlesnake species ( Crotalus oreganus helleri and Crotalus scutulatus ) when defensively striking towards a threatening stimulus. We recorded defensive strikes at body temperatures ranging from 15–35°C. We found that strike speed and speed of mouth gaping during the strike were positively correlated with temperature. We also found a marginal effect of temperature on the probability of striking, latency to strike and strike outcome. Overall, warmer snakes are more likely to strike, strike faster, open their mouth faster and reach maximum gape earlier than colder snakes. However, the effects of temperature were less than would be expected for purely muscle-driven movements. Our results suggest that, although rattlesnakes are at a greater risk of predation at colder body temperatures, their decrease in strike performance may be mitigated to some extent by employing mechanisms in addition to skeletal muscle contraction (e.g. elastic energy storage) to power strikes. 
    more » « less
  4. Abstract Rattlesnakes are widespread mesopredators that are themselves killed and eaten by a host of other predators, including birds of prey and carnivorous mammals. Although anecdotal accounts of rattlesnake depredation are common, there are few quantitative data on encounter rates between rattlesnakes and their predators. Here we review a large database of encounters between rattlesnakes and their predators recorded from field videography of snakes in the sit-and-wait phase of their ambush hunting strategy. We found that, across 8300 hours of observation, adult rattlesnakes of six species and multiple populations exhibit low encounter rates with predators; furthermore, when predators were encountered, we never observed them to attack or kill coiled snakes. Thus, we propose that rattlesnakes are preyed upon while performing other, riskier behaviors associated with moving through the landscape. We also discuss why rattlesnakes are at low risk of predation while hunting on the surface. 
    more » « less
  5. Schaack, Sarah (Ed.)
    Abstract Sex chromosomes diverge after the establishment of recombination suppression, resulting in differential sex-linkage of genes involved in genetic sex determination and dimorphic traits. This process produces systems of male or female heterogamety wherein the Y and W chromosomes are only present in one sex and are often highly degenerated. Sex-limited Y and W chromosomes contain valuable information about the evolutionary transition from autosomes to sex chromosomes, yet detailed characterizations of the structure, composition, and gene content of sex-limited chromosomes are lacking for many species. In this study, we characterize the female-specific W chromosome of the prairie rattlesnake (Crotalus viridis) and evaluate how recombination suppression and other processes have shaped sex chromosome evolution in ZW snakes. Our analyses indicate that the rattlesnake W chromosome is over 80% repetitive and that an abundance of GC-rich mdg4 elements has driven an overall high degree of GC-richness despite a lack of recombination. The W chromosome is also highly enriched for repeat sequences derived from endogenous retroviruses and likely acts as a “refugium” for these and other retroelements. We annotated 219 putatively functional W-linked genes across at least two evolutionary strata identified based on estimates of sequence divergence between Z and W gametologs. The youngest of these strata is relatively gene-rich, however gene expression across strata suggests retained gene function amidst a greater degree of degeneration following ancient recombination suppression. Functional annotation of W-linked genes indicates a specialization of the W chromosome for reproductive and developmental function since recombination suppression from the Z chromosome. 
    more » « less