skip to main content

This content will become publicly available on September 27, 2024

Title: Interaction of supported phospholipid bilayers with diamond nanoparticles non-covalently functionalized with a cationic polyelectrolyte
We use diamond nanoparticles (DNPs) wrapped in the cationic polyelectrolyte poly(allylamine) hydrochloride (PAH) and bilayers composed of either pure DOPC or a mixture of DOPC/DOPG to investigate the influence of membrane phospholipid composition and net surface charge on nanoparticle-membrane interactions and the extent of nanoparticle adhesion to supported phospholipid bilayers. Our results show that in all cases electrostatic attractions between the negatively charged bilayer and cationic PAH-DNP were responsible for the initial attachment of particles, and the lateral electrostatic repulsion between adsorbed particles on the bilayer surface determined the final extent of PAH-DNP attachment. Upon attachment, NPs attract lipids by the contact ion pairing between the ammonium groups on PAH and phosphate and glycerol groups on the lipids and acquire a lipid corona. Lipid corona formation on the PAH-DNP reduces the effective charge density of the particle and is in fact a key factor determining the final extent of NP attachment to the bilayer. Incorporation of DOPG to the bilayer leads to a decrease in efficiency and final extent of attachment compared to DOPC alone. The reduction in PAH-DNP attachment in the presence of DOPG is attributed to the adsorption of free PAH in equilibrium with bound PAH in the nanoparticle solution, thus reducing electrostatic attraction between PAH-DNPs and SLBs. This leads to an increase in hydrogen bonding interactions between lipid headgroups that limits extraction of phospholipids from the bilayer by PAH-DNP, lessening the reduction in interparticle repulsion achieved by acquisition of a lipid corona. Our results indicate that the inclusion of charged phospholipids in SLBs changes bilayer rigidity and stability and hinders the attachment of PAH-DNPs by preventing lipid extraction from the bilayer.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Environmental Science: Nano
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, we report the complex effects of charged lipids on the interaction between amphiphilic Janus nanoparticles and lipid bilayers. Janus nanoparticles are cationic on one hemisphere and hydrophobic on the other. We show that the nanoparticles, beyond threshold concentrations, induce holes in both cationic and anionic lipid bilayers mainly driven by hydrophobic interactions. However, the formation of these defects is non-monotonically dependent on ionic lipid composition. The electrostatic attraction between the particles and anionic lipid bilayers enhances particle adsorption and lowers the particle concentration threshold for defect initiation, but leads to more localized membrane disruption. Electrostatic repulsion leads to reduced particle adsorption on cationic bilayers and extensive defect formation that peaks at intermediate contents of cationic lipids. This study elucidates the significant role lipid composition plays in influencing how amphiphilic Janus nanoparticles interact with and perturb lipid membranes. 
    more » « less
  2. null (Ed.)
    Supported lipid bilayers (SLBs) have proven to be valuable model systems for studying the interactions of proteins, peptides, and nanoparticles with biological membranes. The physicochemical properties (e.g., topography, coating) of the solid substrate may affect the formation and properties of supported phospholipid bilayers, and thus, subsequent interactions with biomolecules or nanoparticles. Here, we examine the influence of support coating (SiO2 vs Si3N4) and topography [sensors with embedded vs protruding gold nanodisks for nanoplasmonic sensing (NPS)] on the formation and subsequent interactions of supported phospholipid bilayers with the model protein cytochrome c and with cationic polymer-wrapped quantum dots using quartz crystal microbalance with dissipation monitoring and NPS techniques. The specific protein and nanoparticle were chosen because they differ in the degree to which they penetrate the bilayer. We find that bilayer formation and subsequent non-penetrative association with cytochrome c were not significantly influenced by substrate composition or topography. In contrast, the interactions of nanoparticles with SLBs depended on the substrate composition. The substrate-dependence of nanoparticle adsorption is attributed to the more negative zeta-potential of the bilayers supported by the silica vs the silicon nitride substrate and to the penetration of the cationic polymer wrapping the nanoparticles into the bilayer. Our results indicate that the degree to which nanoscale analytes interact with SLBs may be influenced by the underlying substrate material. 
    more » « less
  3. null (Ed.)
    A mechanistic understanding of the influence of the surface properties of engineered nanomaterials on their interactions with cells is essential for designing materials for applications such as bioimaging and drug delivery as well as for assessing nanomaterial safety. Ligand-coated gold nanoparticles have been widely investigated because their highly tunable surface properties enable investigations into the effect of ligand functionalization on interactions with biological systems. Lipophilic ligands have been linked to adverse biological outcomes through membrane disruption, but the relationship between ligand lipophilicity and membrane interactions is not well understood. Here, we use a library of cationic ligands coated on 2 nm gold nanoparticles to probe the impact of ligand end group lipophilicity on interactions with supported phosphatidylcholine lipid bilayers as a model for cytoplasmic membranes. Nanoparticle adsorption to and desorption from the model membranes were investigated by quartz crystal microbalance with dissipation monitoring. We find that nanoparticle adsorption to model membranes increases with ligand lipophilicity. The effects of ligand structure on gold nanoparticle attachment were further analyzed using atomistic molecular dynamics simulations, which showed that the increase in ligand lipophilicity promotes ligand intercalation into the lipid bilayer. Together, the experimental and simulation results could be described by a two-state model that accounts for the initial attachment and subsequent conversion to a quasi-irreversibly bound state. We find that only nanoparticles coated with the most lipophilic ligands in our nanoparticle library undergo conversion to the quasi-irreversible state. We propose that the initial attachment is governed by interaction between the ligands and phospholipid tail groups, whereas conversion into the quasi-irreversibly bound state reflects ligand intercalation between phospholipid tail groups and eventual lipid extraction from the bilayer. The systematic variation of ligand lipophilicity enabled us to demonstrate that the lipophilicity of cationic ligands correlates with nanoparticle-bilayer adsorption and suggested that changing the nonpolar ligand R group promotes a mechanism of ligand intercalation into the bilayer associated with irreversible adsorption. 
    more » « less
  4. null (Ed.)
    The plasma membrane of eukaryotic cells is known to be compositionally asymmetric. Certain phospholipids, such as sphingomyelin and phosphatidylcholine species, are predominantly localized in the outer leaflet, while phosphatidylethanolamine and phosphatidylserine species primarily reside in the inner leaflet. While phospholipid asymmetry between the membrane leaflets is well established, there is no consensus about cholesterol distribution between the two leaflets. We have performed a systematic study, via molecular simulations, of how the spatial distribution of cholesterol molecules in different “asymmetric” lipid bilayers are affected by the lipids’ backbone, head-type, unsaturation, and chain-length by considering an asymmetric bilayer mimicking the plasma membrane lipids of red blood cells, as well as seventeen other asymmetric bilayers comprising of different lipid types. Our results reveal that the distribution of cholesterol in the leaflets is solely a function of the extent of ordering of the lipids within the leaflets. The ratio of the amount of cholesterol matches the ratio of lipid order in the two leaflets, thus providing a quantitative relationship between the two. These results are understood by the observation that asymmetric bilayers with equimolar amount of lipids in the two leaflets develop tensile and compressive stresses due to differences in the extent of lipid order. These stresses are alleviated by the transfer of cholesterol from the leaflet in compressive stress to the one in tensile stress. These findings are important in understanding the biology of the cell membrane, especially with regard to the composition of the membrane leaflets. 
    more » « less
  5. We report here the spontaneous formation of lipid-bilayer-wrapped virus particles, following the injection of “naked” virus particles into the subphase of a Langmuir trough with a liquid monolayer of lipids at its air–water interface. The virus particles are those of the well-studied cowpea chlorotic mottle virus, CCMV, which are negatively charged at the pH 6 of the subphase; the lipids are a 9:1 mix of neutral DMPC and cationic CTAB molecules. Before adding CCMV particles to the subphase we establish the mixed lipid monolayer in its liquid-expanded state at a fixed pressure (17.5 mN/m) and average area-per- molecule of (41 ̊A2). Keeping the total area fixed, the surface pressure is observed to decrease at about 15 h after adding the virus particles in the subphase; by 37 h it has dropped to zero, corresponding to essentially all the lipid molecules having been removed from the air–water interface. By collecting particles from the subphase and measuring their sizes by atomic force microscopy, we show that the virus particles have been wrapped by lipid bilayers (or by two lipid bilayers). These results can be understood in terms of thermal fluctuations and electrostatic interactions driving the wrapping of the anionic virus particles by the cationic lipids. 
    more » « less