Although galactic winds play a critical role in regulating galaxy formation, hydrodynamic cosmological simulations do not resolve the scales that govern the interaction between winds and the ambient circumgalactic medium (CGM). We implement the Physically Evolved Wind (PhEW) model of Huang et al. in the gizmo hydrodynamics code and perform test cosmological simulations with different choices of model parameters and numerical resolution. PhEW adopts an explicit subgrid model that treats each wind particle as a collection of clouds that exchange mass and metals with their surroundings and evaporate by conduction and hydrodynamic instabilities as calibrated on much higher resolution cloud scale simulations. In contrast to a conventional wind algorithm, we find that PhEW results are robust to numerical resolution and implementation details because the small scale interactions are defined by the model itself. Compared to our previous wind simulations with the same resolution, our PhEW simulations are in better agreement with low-redshift galactic stellar mass functions at M* < 1011M⊙ because PhEW particles shed mass to the CGM before escaping low mass haloes. PhEW radically alters the CGM metal distribution because PhEW particles disperse metals to the ambient medium as their clouds dissipate, producing a CGM metallicity distribution that is skewed but unimodal and is similar between cold and hot gas. While the temperature distributions and radial profiles of gaseous haloes are similar in simulations with PhEW and conventional winds, these changes in metal distribution will affect their predicted UV/X-ray properties in absorption and emission.
Arkenstone is a new model for multiphase, stellar feedback-driven galactic winds designed for inclusion in coarse resolution cosmological simulations. In this first paper of a series, we describe the features that allow Arkenstone to properly treat high specific energy wind components and demonstrate them using idealized non-cosmological simulations of a galaxy with a realistic circumgalactic medium (CGM), using the arepo code. Hot, fast gas phases with low mass loadings are predicted to dominate the energy content of multiphase outflows. In order to treat the huge dynamic range of spatial scales involved in cosmological galaxy formation at feasible computational expense, cosmological volume simulations typically employ a Lagrangian code or else use adaptive mesh refinement with a quasi-Lagrangian refinement strategy. However, it is difficult to inject a high specific energy wind in a Lagrangian scheme without incurring artificial burstiness. Additionally, the low densities inherent to this type of flow result in poor spatial resolution. Arkenstone addresses these issues with a novel scheme for coupling energy into the transition region between the interstellar medium (ISM) and the CGM, while also providing refinement at the base of the wind. Without our improvements, we show that poor spatial resolution near the sonic point of a hot, fast outflow leads to an underestimation of gas acceleration as the wind propagates. We explore the different mechanisms by which low and high specific energy winds can regulate the star formation rate of galaxies. In future work, we will demonstrate other aspects of the Arkenstone model.
more » « less- NSF-PAR ID:
- 10473394
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 527
- Issue:
- 1
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 1216-1243
- Size(s):
- p. 1216-1243
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract Accreting black holes can drive fast and energetic nuclear winds that may be an important feedback mechanism associated with active galactic nuclei (AGN). In this paper, we implement a scheme for capturing feedback from these fast nuclear winds and examine their impact in simulations of isolated disk galaxies. Stellar feedback is modeled using the FIRE physics and produces a realistic multiphase interstellar medium (ISM). We find that AGN winds drive the formation of a low-density, high-temperature central gas cavity that is broadly consistent with analytic model expectations. The effects of AGN feedback on the host galaxy are a strong function of the wind kinetic power and momentum. Low and moderate luminosity AGN do not have a significant effect on their host galaxy: the AGN winds inefficiently couple to the ambient ISM and instead a significant fraction of their energy vents in the polar direction. For such massive black holes, accretion near the Eddington limit can have a dramatic impact on the host galaxy ISM: if AGN wind feedback acts for ≳ 20 − 30 Myr, the inner ∼1 − 10 kpc of the ISM is disrupted and the global galaxy star formation rate is significantly reduced. We quantify the properties of the resulting galaxy-scale outflows and find that the radial momentum in the outflow is boosted by a factor ∼2 − 3 relative to that initially supplied in the AGN wind for strong feedback scenarios, decreasing below unity for less energetic winds. In contrast to observations, however, the outflows are primarily hot, with very little atomic or molecular gas. We conjecture that merging galaxies and high-redshift galaxies, which have more turbulent and thicker disks and very different nuclear gas geometries, may be even more disrupted by AGN winds than found in our simulations.more » « less
-
ABSTRACT We study gas inflows on to supermassive black holes using hydrodynamics simulations of isolated galaxies and idealized galaxy mergers with an explicit, multiphase interstellar medium (ISM). Our simulations use the recently developed ISM and stellar evolution model called Stars and MUltiphase Gas in GaLaxiEs (SMUGGLE). We implement a novel super-Lagrangian refinement scheme that increases the gas mass resolution in the immediate neighbourhood of the black holes (BHs) to accurately resolve gas accretion. We do not include black hole feedback in our simulations. We find that the complex and turbulent nature of the SMUGGLE ISM leads to highly variable BH accretion. BH growth in SMUGGLE converges at gas mass resolutions ≲3 × 103 M⊙. We show that the low resolution simulations combined with the super-Lagrangian refinement scheme are able to produce central gas dynamics and BH accretion rates very similar to that of the uniform high resolution simulations. We further explore BH fueling by simulating galaxy mergers. The interaction between the galaxies causes an inflow of gas towards the galactic centres and results in elevated and bursty star formation. The peak gas densities near the BHs increase by orders of magnitude resulting in enhanced accretion. Our results support the idea that galaxy mergers can trigger AGN activity, although the instantaneous accretion rate depends strongly on the local ISM. We also show that the level of merger-induced enhancement of BH fueling predicted by the SMUGGLE model is much smaller compared to the predictions by simulations using an effective equation of state model of the ISM.
-
ABSTRACT We introduce the Stars and MUltiphase Gas in GaLaxiEs – SMUGGLE model, an explicit and comprehensive stellar feedback model for the moving-mesh code arepo. This novel sub-resolution model resolves the multiphase gas structure of the interstellar medium and self-consistently generates gaseous outflows. The model implements crucial aspects of stellar feedback including photoionization, radiation pressure, energy, and momentum injection from stellar winds and from supernovae. We explore this model in high-resolution isolated simulations of Milky Way like disc galaxies. Stellar feedback regulates star formation to the observed level and naturally captures the establishment of a Kennicutt–Schmidt relation. This result is achieved independent of the numerical mass and spatial resolution of the simulations. Gaseous outflows are generated with average mass loading factors of the order of unity. Strong outflow activity is correlated with peaks in the star formation history of the galaxy with evidence that most of the ejected gas eventually rains down on to the disc in a galactic fountain flow that sustains late-time star formation. Finally, the interstellar gas in the galaxy shows a distinct multiphase distribution with a coexistence of cold, warm, and hot phases.more » « less
-
null (Ed.)ABSTRACT We examine the thermodynamic state and cooling of the low-z circumgalactic medium (CGM) in five FIRE-2 galaxy formation simulations of Milky Way-mass galaxies. We find that the CGM in these simulations is generally multiphase and dynamic, with a wide spectrum of largely non-linear density perturbations sourced by the accretion of gas from the intergalactic medium (IGM) and outflows from both the central and satellite galaxies. We investigate the origin of the multiphase structure of the CGM with a particle-tracking analysis and find that most of the low-entropy gas has cooled from the hot halo as a result of thermal instability triggered by these perturbations. The ratio of cooling to free-fall time-scales tcool/tff in the hot component of the CGM spans a wide range of ∼1−100 at a given radius but exhibits approximately constant median values of ∼5−20 at all radii 0.1Rvir < r < Rvir. These are similar to the ≈10−20 value typically adopted as the thermal instability threshold in ‘precipitation’ models of the ICM. Consequently, a one-dimensional model based on the assumption of a constant tcool/tff and hydrostatic equilibrium approximately reproduces the number density and entropy profiles of each simulation but only if it assumes the metallicity profile and temperature boundary condition taken directly from the simulation. We explicitly show that the tcool/tff value of a gas parcel in the hot component of the CGM does not predict its probability of subsequently accreting on to the central galaxy. This suggests that the value of tcool/tff is a poor predictor of thermal stability in gaseous haloes in which large-amplitude density perturbations are prevalent.more » « less