Hypothesis: Symmetry breaking in an electric field-driven active particle system can be induced by applying a spatially uniform, but temporally non-uniform, alternating current (AC) signal. Regardless of the type of particles exposed to sawtooth AC signals, the unevenly induced polarization of the ionic charge layer leads to a major electrohydrodynamic effect of active propulsion, termed Asymmetric Field Electrophoresis (AFEP). Experiments: Suspensions containing latex microspheres of three sizes, as well as Janus and metal-coated particles were subjected to sawtooth AC signals of varying voltages, frequencies, and time asymmetries. Particle tracking via microscopy was used to analyze their motility as a function of the key parameters. Findings: The particles exhibit field-colinear active propulsion, and the temporal reversal of the AC signal results in a reversal of their direction of motion. The experimental velocity data as a function of field strength, frequency, and signal asymmetry are supported by models of asymmetric ionic concentration-polarization. The direction of particle migration exhibits a size-dependent crossover in the low frequency domain. This enables new approaches for simple and efficient on-chip sorting. Combining AFEP with other AC motility mechanisms, such as induced-charge electrophoresis, allows multiaxial control of particle motion and could enable development of novel AC field-driven active microsystems.
more »
« less
Measuring the electrophoretic mobility and size of single particles using microfluidic transverse AC electrophoresis (TrACE)
The ability to measure the charge and size of single particles is essential to understanding particle adhesion and interaction with their environment. Characterizing the physical properties of biological particles, like cells, can be a powerful tool in studying the association between the changes in physical properties and disease development. Currently, measuring charge via the electrophoretic mobility (μep) of individual particles remains challenging, and there is only one prior report of simultaneously measuring μep and size. We introduce microfluidic transverse AC electrophoresis (TrACE), a novel technique that combines particle tracking velocimetry (PTV) and AC electrophoresis. In TrACE, electric waves with 0.75 to 1.5 V amplitude are applied transversely to the bulk flow and cause the particles to oscillate. PTV records the particles' oscillating trajectories as pressure drives bulk flow through the microchannel. A simple quasi-equilibrium model agrees well with experimental measurements of frequency, amplitude, and phase, indicating that particle motion is largely described by DC electrophoresis. The measured μep of polystyrene particles (0.53, 0.84, 1, and 2 μm diameter) are consistent with ELS measurements, and precision is enhanced by averaging ∼100 measurements per particle. Particle size is simultaneously measured from Brownian motion quantified from the trajectory for particles <2 μm or image analysis for particles ≥2 μm. Lastly, the ability to analyze intact mammalian cells is demonstrated with B cells. TrACE systems are expected to be highly suitable as fieldable tools to measure the μep and size of a broad range of individual particles.
more »
« less
- Award ID(s):
- 2216766
- PAR ID:
- 10473488
- Editor(s):
- Wheeler, Aaron
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Lab on a Chip
- ISSN:
- 1473-0197
- Subject(s) / Keyword(s):
- Microfluidics transverse AC electrophoresis single particle characterization electrophoretic mobility particle size Brownian motion alternating current square wave sine wave mammalian cells.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multiple particle tracking microrheology (MPT) is a powerful tool for quantitatively characterizing rheological properties of soft matter. Traditionally, MPT uses a single particle size to characterize rheological properties. But in complex systems, MPT measurements with a single size particle can characterize distinct properties that are linked to the materials' length scale dependent structure. By varying the size of probes, MPT can measure the properties associated with different length scales within a material. We develop a technique to simultaneously track a bi-disperse population of probe particles. 0.5 and 2 μm particles are embedded in the same sample and these particle populations are tracked separately using a brightness-based squared radius of gyration, R g 2 . Bi-disperse MPT is validated by measuring the viscosity of glycerol samples at varying concentrations. Bi-disperse MPT measurements agree well with literature values. This technique then characterizes a homogeneous poly(ethylene glycol)-acrylate:poly(ethylene glycol)-dithiol gelation. The critical relaxation exponent and critical gelation time are consistent and agree with previous measurements using a single particle. Finally, degradation of a heterogeneous hydrogenated castor oil colloidal gel is characterized. The two particle sizes measure a different value of the critical relaxation exponent, indicating that they are probing different structures. Analysis of material heterogeneity shows measured heterogeneity is dependent on probe size indicating that each particle is measuring rheological evolution of a length scale dependent structure. Overall, bi-disperse MPT increases the amount of information gained in a single measurement, enabling more complete characterization of complex systems that range from consumer care products to biological materials.more » « less
-
Contact charge electrophoresis (CCEP) uses steady electric fields to drive the continuous, oscillatory motion of conductive particles and droplets between two or more electrodes. These rapid oscillations can be rectified to direct the motion of objects within microfluidic environments using low-power, dc voltage. Here, we compare high precision experimental measurements of CCEP within a microfluidic system to equally detailed theoretical predictions on the motion of a conductive particle between parallel electrodes. We use a simple, capillary microfluidic platform that combines high-speed imaging with precision electrical measurements to enable the synchronized acquisition of both the particle location and the electric current due to particle motion. The experimental results are compared to those of a theoretical model, which relies on a Stokesian dynamics approach to accurately describe both the electrostatic and hydrodynamic problems governing particle motion. We find remarkable agreement between theory and experiment, suggesting that particle motion can be accurately captured by a combination of classical electrostatics and low-Reynolds number hydrodynamics. Building on this agreement, we offer new insight into the charge transfer process that occurs when the particle nears contact with an electrode surface. In particular, we find that the particle does not make mechanical contact with the electrode but rather that charge transfer occurs at finite surface separations of >0.1 μm by means of an electric discharge through a thin lubricating film. We discuss the implications of these findings on the charging of the particle and its subsequent dynamics.more » « less
-
We investigate the dynamics of metallodielectric Janus particles moving via contact charge electrophoresis (CCEP) between two parallel electrodes. CCEP uses a constant voltage to repeatedly charge and actuate conductive particles within a dielectric fluid, resulting in rapid oscillatory motion between the electrodes. In addition to particle oscillations, we find that micrometer-scale Janus particles move perpendicular to the field at high speeds (up to 600 μm/s) and over large distances. We characterize particle motions and propose a mechanism based on the rotation-induced translation of the particle following charge transfer at the electrode surface. The propulsion mechanism is supported both by experiments with fluorescent particles that reveal their rotational motions and by simulations of CCEP dynamics that capture the relevant electrostatics and hydrodynamics. We also show that interactions among multiple particles can lead to repulsion, attraction, and/or cooperative motions depending on the position and phase of the respective particle oscillators. Our results demonstrate how particle asymmetries can be used to direct the motions of active colloids powered by CCEP.more » « less
-
We present a water-in-oil droplet microfluidic trap array capable of modulating the distance between co-encapsulated cell pairs through microvortex formation. We demonstrate that vortex shape and periodicity can be directly controlled by the continuous phase flow rate. Explicit equations for the recirculation time inside droplet microvortices were derived by approximating the velocity fields through analytic solutions for the flow inside and outside of a spherical droplet. Comparison of these expressions against Particle Tracking Velocimetry (PTV) measurements of K562 (leukemia) cells circulating inside 50 μm droplets showed excellent theoretical agreement.more » « less