skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: Fluctuating selection facilitates the discovery of broadly effective but difficult to reach adaptive outcomes in yeast
Abstract

Evolutionary compromises are thought to be common under fluctuating selection because the mutations that best enable adaptation to one environmental context can often be detrimental to others. Yet, prior experimental work has shown that generalists can sometimes perform as well as specialists in their own environments. Here we use a highly replicated evolutionary experiment (N = 448 asexual lineages of the brewer’s yeast) to show that even though fluctuation between two environmental conditions often induces evolutionary compromises (at least early on), it can also help reveal difficult to reach adaptive outcomes that ultimately improve performance in both environments. Specifically, we begin by showing that yeast adaptation to chemical stress can involve fitness trade-offs with stress-free environments and that, accordingly, lineages that are repeatedly exposed to occasional stress tend to respond by trading performance for breadth of adaptation. We then show that on rare occasions, fluctuating selection leads to the evolution of no-cost generalists that can even outcompete constant selection specialists in their own environments. We propose that the discovery of these broader and more effective adaptive outcomes under fluctuating selection could be partially facilitated by changes in the adaptive landscape that result from having to deal with fitness trade-offs across different environmental conditions. Overall, our findings indicate that reconciling the short- and long-term evolutionary consequences of fluctuating selection could significantly improve our understanding of the evolution of specialization and generalism.

 
more » « less
NSF-PAR ID:
10473634
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution Letters
Volume:
8
Issue:
2
ISSN:
2056-3744
Format(s):
Medium: X Size: p. 243-252
Size(s):
p. 243-252
Sponsoring Org:
National Science Foundation
More Like this
  1. Evolutionary adaptation to a constant environment is driven by the accumulation of mutations which can have a range of unrealized pleiotropic effects in other environments. These pleiotropic consequences of adaptation can influence the emergence of specialists or generalists, and are critical for evolution in temporally or spatially fluctuating environments. While many experiments have examined the pleiotropic effects of adaptation at a snapshot in time, very few have observed the dynamics by which these effects emerge and evolve. Here, we propagated hundreds of diploid and haploid laboratory budding yeast populations in each of three environments, and then assayed their fitness in multiple environments over 1000 generations of evolution. We find that replicate populations evolved in the same condition share common patterns of pleiotropic effects across other environments, which emerge within the first several hundred generations of evolution. However, we also find dynamic and environment-specific variability within these trends: variability in pleiotropic effects tends to increase over time, with the extent of variability depending on the evolution environment. These results suggest shifting and overlapping contributions of chance and contingency to the pleiotropic effects of adaptation, which could influence evolutionary trajectories in complex environments that fluctuate across space and time. 
    more » « less
  2. Abstract

    Environmental heterogeneity is considered a general explanation for phenotypic diversification, particularly when heterogeneity causes populations to diverge via local adaptation. Performance trade‐offs, such as those stemming from antagonistic pleiotropy, are thought to contribute to the maintenance of diversity in this scenario. Specifically, alleles that promote adaptation in one environment are expected to promote maladaptation in alternative environments. Contrary to this expectation, however, alleles that underlie locally adaptive traits often fail to exhibit fitness costs in alternative environments. Here, we attempt to explain this paradox by reviewing the results of experimental evolution studies, including a new one of our own, that examined the evolution of trade‐offs during adaptation to homogeneous versus heterogeneous environments. We propose that when pleiotropic effects vary, whether or not trade‐offs emerge among diverging populations will depend critically on ecology. For example, adaptation to a locally homogeneous environment is more likely to occur by alleles that are antagonistically pleiotropic than adaptation to a locally heterogeneous environment, simply because selection is blind to costs associated with environments that are not experienced locally. Our literature review confirmed the resulting prediction that performance trade‐offs were more likely to evolve during selection in homogeneous than heterogeneous environments. The nature of the environmental heterogeneity (spatial versus temporal) and the length of the experiment also contributed in predictable ways to the likelihood that performance trade‐offs evolved.

     
    more » « less
  3. Organisms exhibit extensive variation in ecological niche breadth, from very narrow (specialists) to very broad (generalists). Two general paradigms have been proposed to explain this variation: trade-offs between performance efficiency and breadth; and the joint influence of extrinsic (environmental) and intrinsic (genomic) factors. We assembled genomic, metabolic, and ecological data from nearly all known species of the ancient fungal subphylum Saccharomycotina (1,154 yeast strains from 1,051 species), grown in 24 different environmental conditions, to examine niche breadth evolution. We found that large differences in the breadth of carbon utilization traits between yeasts stem from intrinsic differences in genes encoding specific metabolic pathways, but limited evidence for trade-offs. These comprehensive data argue that intrinsic factors shape niche breadth variation in microbes. 
    more » « less
  4. Premise

    Industrialization and human activities have elevated temperatures and caused novel precipitation patterns, altering soil moisture and nutrient availability. Predicting evolutionary responses to climate change requires information on the agents of selection that drive local adaptation and influence resource acquisition and allocation. Here, we examined the contribution of nutrient and drought stress to local adaptation, and we tested whether trade‐offs across fitness components constrain or facilitate adaptation under resource stress.

    Methods

    We exposed 35 families ofBoechera stricta(Brassicaceae) to three levels of water and two levels of nutrient supply in a factorial design in the greenhouse. We sourced maternal families from a broad elevational gradient (2499–3530 m a.s.l.), representing disparate soil moisture and nutrient availability.

    Results

    Concordant with local adaptation, maternal families from arid, low‐elevation populations had enhanced fecundity under severe drought over those from more mesic, high‐elevation sites. Furthermore, fitness trade‐offs between growth and reproductive success depended on the environmental context. Under high, but not low, nutrient levels, we found a negative phenotypic relationship between the probability of reproduction and growth rate. Similarly, a negative phenotypic association only emerged between fecundity and growth under severe drought stress, not the benign water treatment levels, indicating that stressful resource environments alter the direction of trait correlations. Genetic covariances were broadly concordant with these phenotypic patterns.

    Conclusions

    Despite high heritabilities in all fitness components across treatments, trade‐offs between growth and reproduction could constrain adaptation to increasing drought stress and novel nutrient levels.

     
    more » « less
  5. The evolution of multicellular life spurred evolutionary radiations, fundamentally changing many of Earth’s ecosystems. Yet little is known about how early steps in the evolution of multicellularity affect eco-evolutionary dynamics. Through long-term experimental evolution, we observed niche partitioning and the adaptive divergence of two specialized lineages from a single multicellular ancestor. Over 715 daily transfers, snowflake yeast were subjected to selection for rapid growth, followed by selection favouring larger group size. Small and large cluster-forming lineages evolved from a monomorphic ancestor, coexisting for over ~4,300 generations, specializing on divergent aspects of a trade-off between growth rate and survival. Through modelling and experimentation, we demonstrate that coexistence is maintained by a trade-off between organismal size and competitiveness for dissolved oxygen. Taken together, this work shows how the evolution of a new level of biological individuality can rapidly drive adaptive diversification and the expansion of a nascent multicellular niche, one of the most historically impactful emergent properties of this evolutionary transition. 
    more » « less