skip to main content


Title: Hidden Markov random field models for cell-type assignment of spatially resolved transcriptomics
Abstract Motivation

The recent development of spatially resolved transcriptomics (SRT) technologies has facilitated research on gene expression in the spatial context. Annotating cell types is one crucial step for downstream analysis. However, many existing algorithms use an unsupervised strategy to assign cell types for SRT data. They first conduct clustering analysis and then aggregate cluster-level expression based on the clustering results. This workflow fails to leverage the marker gene information efficiently. On the other hand, other cell annotation methods designed for single-cell RNA-seq data utilize the cell-type marker genes information but fail to use spatial information in SRT data.

Results

We introduce a statistical spatial transcriptomics cell assignment model, SPAN, to annotate clusters of cells or spots into known types in SRT data with prior knowledge of predefined marker genes and spatial information. The SPAN model annotates cells or spots from SRT data using predefined overexpressed marker genes and combines a mixture model with a hidden Markov random field to model the spatial dependency between neighboring spots. We demonstrate the effectiveness of SPAN against spatial and nonspatial clustering algorithms through extensive simulation and real data experiments.

Availability and implementation

https://github.com/ChengZ352/SPAN.

 
more » « less
NSF-PAR ID:
10473638
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
39
Issue:
11
ISSN:
1367-4811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    The analysis of spatially resolved transcriptome enables the understanding of the spatial interactions between the cellular environment and transcriptional regulation. In particular, the characterization of the gene–gene co-expression at distinct spatial locations or cell types in the tissue enables delineation of spatial co-regulatory patterns as opposed to standard differential single gene analyses. To enhance the ability and potential of spatial transcriptomics technologies to drive biological discovery, we develop a statistical framework to detect gene co-expression patterns in a spatially structured tissue consisting of different clusters in the form of cell classes or tissue domains.

    Results

    We develop SpaceX (spatially dependent gene co-expression network), a Bayesian methodology to identify both shared and cluster-specific co-expression network across genes. SpaceX uses an over-dispersed spatial Poisson model coupled with a high-dimensional factor model which is based on a dimension reduction technique for computational efficiency. We show via simulations, accuracy gains in co-expression network estimation and structure by accounting for (increasing) spatial correlation and appropriate noise distributions. In-depth analysis of two spatial transcriptomics datasets in mouse hypothalamus and human breast cancer using SpaceX, detected multiple hub genes which are related to cognitive abilities for the hypothalamus data and multiple cancer genes (e.g. collagen family) from the tumor region for the breast cancer data.

    Availability and implementation

    The SpaceX R-package is available at github.com/bayesrx/SpaceX.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract

    Spatially-resolved RNA profiling has now been widely used to understand cells’ structural organizations and functional roles in tissues, yet it is challenging to reconstruct the whole spatial transcriptomes due to various inherent technical limitations in tissue section preparation and RNA capture and fixation in the application of the spatial RNA profiling technologies. Here, we introduce a graph-guided neural tensor decomposition (GNTD) model for reconstructing whole spatial transcriptomes in tissues. GNTD employs a hierarchical tensor structure and formulation to explicitly model the high-order spatial gene expression data with a hierarchical nonlinear decomposition in a three-layer neural network, enhanced by spatial relations among the capture spots and gene functional relations for accurate reconstruction from highly sparse spatial profiling data. Extensive experiments on 22 Visium spatial transcriptomics datasets and 3 high-resolution Stereo-seq datasets as well as simulation data demonstrate that GNTD consistently improves the imputation accuracy in cross-validations driven by nonlinear tensor decomposition and incorporation of spatial and functional information, and confirm that the imputed spatial transcriptomes provide a more complete gene expression landscape for downstream analyses of cell/spot clustering for tissue segmentation, and spatial gene expression clustering and visualizations.

     
    more » « less
  3. Abstract Summary

    With the advancements of high-throughput single-cell RNA-sequencing protocols, there has been a rapid increase in the tools available to perform an array of analyses on the gene expression data that results from such studies. For example, there exist methods for pseudo-time series analysis, differential cell usage, cell-type detection RNA-velocity in single cells, etc. Most analysis pipelines validate their results using known marker genes (which are not widely available for all types of analysis) and by using simulated data from gene-count-level simulators. Typically, the impact of using different read-alignment or unique molecular identifier (UMI) deduplication methods has not been widely explored. Assessments based on simulation tend to start at the level of assuming a simulated count matrix, ignoring the effect that different approaches for resolving UMI counts from the raw read data may produce. Here, we present minnow, a comprehensive sequence-level droplet-based single-cell RNA-sequencing (dscRNA-seq) experiment simulation framework. Minnow accounts for important sequence-level characteristics of experimental scRNA-seq datasets and models effects such as polymerase chain reaction amplification, cellular barcodes (CB) and UMI selection and sequence fragmentation and sequencing. It also closely matches the gene-level ambiguity characteristics that are observed in real scRNA-seq experiments. Using minnow, we explore the performance of some common processing pipelines to produce gene-by-cell count matrices from droplet-bases scRNA-seq data, demonstrate the effect that realistic levels of gene-level sequence ambiguity can have on accurate quantification and show a typical use-case of minnow in assessing the output generated by different quantification pipelines on the simulated experiment.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Seeds, which provide a major source of calories for humans, are a unique stage of a flowering plant’s lifecycle. During seed germination the embryo reactivates rapidly and goes through major developmental transitions to become a seedling. This requires extensive and complex spatiotemporal coordination of cell and tissue activity. Existing gene expression profiling methods, such as laser capture microdissection followed by RNA-seq and single-cell RNA7 seq, suffer from either low throughput or the loss of spatial information about the cells analysed. Spatial transcriptomics methods couple high throughput analysis of gene expression simultaneously with the ability to record the spatial location of each individual region analysed. We developed a spatial transcriptomics workflow for germinating barley grain to better understand the spatiotemporal control of gene expression within individual seed cell types. More than 14,000 genes were differentially regulated across 0, 1, 3, 6 and 24 hours after imbibition. This approach enabled us to observe that many functional categories displayed specific spatial expression patterns that could be resolved at a sub-tissue level. Individual aquaporin gene family members, important for water and ion transport, had specific spatial expression patterns over time, as well as genes related to cell wall modification, membrane transport and transcription factors. Using spatial autocorrelation algorithms, we were able to identify auxin transport genes that had increasingly focused expression within subdomains of the embryo over germination time, suggestive of a role in establishment of the embryo axis. Together, our data provides an unprecedented spatially resolved cellular map for barley grain germination and specific genes to target for functional genomics to define cellular restricted processes in tissues during germination. The data can be viewed at https://spatial.latrobe.edu.au/. 
    more » « less
  5. Abstract Motivation

    Single-cell RNA sequencing (scRNAseq) technologies allow for measurements of gene expression at a single-cell resolution. This provides researchers with a tremendous advantage for detecting heterogeneity, delineating cellular maps or identifying rare subpopulations. However, a critical complication remains: the low number of single-cell observations due to limitations by rarity of subpopulation, tissue degradation or cost. This absence of sufficient data may cause inaccuracy or irreproducibility of downstream analysis. In this work, we present Automated Cell-Type-informed Introspective Variational Autoencoder (ACTIVA): a novel framework for generating realistic synthetic data using a single-stream adversarial variational autoencoder conditioned with cell-type information. Within a single framework, ACTIVA can enlarge existing datasets and generate specific subpopulations on demand, as opposed to two separate models [such as single-cell GAN (scGAN) and conditional scGAN (cscGAN)]. Data generation and augmentation with ACTIVA can enhance scRNAseq pipelines and analysis, such as benchmarking new algorithms, studying the accuracy of classifiers and detecting marker genes. ACTIVA will facilitate analysis of smaller datasets, potentially reducing the number of patients and animals necessary in initial studies.

    Results

    We train and evaluate models on multiple public scRNAseq datasets. In comparison to GAN-based models (scGAN and cscGAN), we demonstrate that ACTIVA generates cells that are more realistic and harder for classifiers to identify as synthetic which also have better pair-wise correlation between genes. Data augmentation with ACTIVA significantly improves classification of rare subtypes (more than 45% improvement compared with not augmenting and 4% better than cscGAN) all while reducing run-time by an order of magnitude in comparison to both models.

    Availability and implementation

    The codes and datasets are hosted on Zenodo (https://doi.org/10.5281/zenodo.5879639). Tutorials are available at https://github.com/SindiLab/ACTIVA.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less