Abstract Exposure to climate hazards is increasing, and the experiences of frontline communities warrant meaningful and urgent attention towards how to mitigate, manage, and adapt to hazards. We report results from a community-engaged pilot (November 2021–June 2022) ofN= 30 participants in four frontline communities of the San Francisco Bay Area, California, USA. The study region is an area where low-income, non-English-speaking residents are inequitably exposed and vulnerable to wildfire smoke, extreme heat, and other climate hazards. Building from a yearslong partnership of researchers, community organizations, and community members, we report the feasibility of a project piloting (1) instruments to monitor indoor air quality, temperature, and participant sleep health, and (2) interventions to improve indoor air quality and support protective behaviors. Data collection included experience-based survey data (via in-person administered surveys and a smartphone application) and interviews about heat and air quality, as well as data from an air monitoring protocol. Results cover the prevalence of hazard exposure and protective actions among participants. We discuss throughout methods for conducting and evaluating a community-engaged pilot, particularly by using a community ambassador program. Implications include the feasibility of community-engaged research projects, including discussion of resources required to accomplish this work.
more »
« less
Mixed methods assessment of personal heat exposure, sleep, physical activity, and heat adaptation strategies among urban residents in the Boston area, MA
Abstract The growing frequency, intensity, and duration of extreme heat events necessitates interventions to reduce heat exposures. Local opportunities for heat adaptation may be optimally identified through collection of both quantitative exposure metrics and qualitative data on perceptions of heat. In this study, we used mixed methods to characterize heat exposure among urban residents in the area of Boston, Massachusetts, US, in summer 2020. Repeated interviews ofN = 24 study participants ascertained heat vulnerability and adaptation strategies. Participants also used low-cost sensors to collect temperature, location, sleep, and physical activity data. We saw significant differences across temperature metrics: median personal temperature exposures were 3.9 °C higher than median ambient weather station temperatures. Existing air conditioning (AC) units did not adequately control indoor temperatures to desired thermostat levels: even with AC use, indoor maximum temperatures increased by 0.24 °C per °C of maximum outdoor temperature. Sleep duration was not associated with indoor or outdoor temperature. On warmer days, we observed a range of changes in time-at-home, expected given our small study size. Interview results further indicated opportunities for heat adaptation interventions including AC upgrades, hydration education campaigns, and amelioration of energy costs during high heat periods. Our mixed methods design informs heat adaptation interventions tailored to the challenges faced by residents in the study area. The strength of our community-academic partnership was a large part of the success of the mixed methods approach.
more »
« less
- Award ID(s):
- 1735087
- PAR ID:
- 10473771
- Publisher / Repository:
- BMC Public Health
- Date Published:
- Journal Name:
- BMC Public Health
- Volume:
- 22
- Issue:
- 1
- ISSN:
- 1471-2458
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
IntroductionThis study assesses the person-specific impact of extreme heat on low-income households using wearable sensors. The focus is on the intensive and longitudinal assessment of physical activity and sleep with the rising person-specific ambient temperature. MethodsThis study recruited 30 participants in a low-income and predominantly Black community in Houston, Texas in August and September of 2022. Each participant wore on his/her wrist an accelerometer that recorded person-specific ambient temperature, sedentary behavior, physical activity intensity (low and moderate to vigorous), and sleep efficiency 24 h over 14 days. Mixed effects models were used to analyze associations among physical activity, sleep, and person-specific ambient temperature. ResultsThe main findings include increased sedentary time, sleep impairment with the rise of person-level ambient temperature, and the mitigating role of AC. ConclusionsExtreme heat negatively affects physical activity and sleep. The negative consequences are especially critical for those with limited use of AC in lower-income neighborhoods of color. Staying home with a high indoor temperature during hot days can lead to various adverse health outcomes including accelerated cognitive decline, higher cancer risk, and social isolation.more » « less
-
Abstract Continued climate change is increasing the frequency, severity, and duration of populations’ high temperature exposures. Indoor cooling is a key adaptation, especially in urban areas, where heat extremes are intensified—the urban heat island effect (UHI)—making residential air conditioning (AC) availability critical to protecting human health. In the United States, the differences in residential AC prevalence from one metropolitan area to another is well understood, but its intra-urban variation is poorly characterized, obscuring neighborhood-scale variability in populations’ heat vulnerability and adaptive capacity. We address this gap by constructing empirically derived probabilities of residential AC for 45,995 census tracts across 115 metropolitan areas. Within cities, AC is unequally distributed, with census tracts in the urban “core” exhibiting systematically lower prevalence than their suburban counterparts. Moreover, this disparity correlates strongly with multiple indicators of social vulnerability and summer daytime surface UHI intensity, highlighting the challenges that vulnerable urban populations face in adapting to climate-change driven heat stress amplification.more » « less
-
Abstract Global cooling capacity is expected to triple by 2050, as rising temperatures and humidity levels intensify the heat stress that populations experience. Although air conditioning (AC) is a key adaptation tool for reducing exposure to extreme heat, we currently have a limited understanding of patterns of AC ownership. Developing high resolution estimates of AC ownership is critical for identifying communities vulnerable to extreme heat and for informing future electricity system investments as increases in cooling demand will exacerbate strain placed on aging power systems. In this study, we utilize a segmented linear regression model to identify AC ownership across Southern California by investigating the relationship between daily household electricity usage and a variety of humid heat metrics (HHMs) for ~160000 homes. We hypothesize that AC penetration rate estimates, i.e. the percentage of homes in a defined area that have AC, can be improved by considering indices that incorporate humidity as well as temperature. We run the model for each household with each unique heat metric for the years 2015 and 2016 and compare differences in AC ownership estimates at the census tract level. In total, 81% of the households were identified as having AC by at least one heat metric while 69% of the homes were determined to have AC with a consensus across all five of the heat metrics. Regression results also showed that ther2values for the dry bulb temperature (DBT) (0.39) regression were either comparable to or higher than ther2values for HHMs (0.15–0.40). Our results suggest that using a combination of heat metrics can increase confidence in AC penetration rate estimates, but using DBT alone produces similar estimates to other HHMs, which are often more difficult to access, individually. Future work should investigate these results in regions with high humidity.more » « less
-
Personal exposures to environmental stressors including extreme heat and air pollution vary widely depending on schedules and activities. This paper shares results of a city-scale project to build fixed indoor and outdoor sensor networks while also deploying mobile sensors. The network helps building occupants, building operators, and public officials to safely manage extreme heat and air pollution. The Exposure Duration Curve (EDC) concept is introduced to facilitate comparisons.more » « less
An official website of the United States government

