skip to main content

Title: Comparative survival of environmental and clinical Mycobacterium abscessus isolates in a variety of diverse host cells
Abstract Aims

Mycobacterium abscessus subsp. abscessus (MABS) is an emerging, opportunistic pathogen found globally in freshwater biofilms and soil. Typically, isolates are treated as a uniform group of organisms and very little is known about their comparative survival in healthy host cells. We posit that environmentally- and clinically derived isolates, show differential infectivity in immune cells and resistance to innate defenses.

Methods and Results

Six MABS isolates were tested including three water biofilm/soil and three sputum-derived isolates. A clinical MABS type strain and an environmental isolate of Arthrobacter were also included. MABS counts were significantly higher compared to Arthrobacter after co-culture with Acanthamoeba lenticulata, BEAS-2B epithelial cells, alveolar macrophages and the THP-1 macrophage cell line. A rough sputum-derived MABS isolate emerged as an isolate with higher virulence compared to others tested, as both a pellicle and cord former, survivor in the human cell models tested, inducer of high and prolonged production of pro-inflammatory cytokines, and the capacity to evade LL-37.


Findings support intraspecies variation between MABS isolates.

Significance and Impact of the Study

These data indicate subversion of host immune defenses by environmental and clinical MABS isolates is nuanced and maybe isolate dependent, providing new information regarding the pathogenesis of NTM infections.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Applied Microbiology
Page Range / eLocation ID:
3302 to 3314
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    The endophyteEpichloë alsodes, with known insecticidal properties, is found in a majority ofPoa alsodespopulations across a latitudinal gradient from North Carolina to New York. A second endophyte,E. schardliivar.pennsylvanica, with known insect‐deterring effects, is limited to a few populations in Pennsylvania. We explored whether such disparate differences in distributions could be explained by selection from biotic and abiotic environmental factors.


    Along the Appalachian Mountains from North Carolina to New York, USA.




    Studied correlations of infection frequencies with abiotic and biotic environmental factors. Checked endophyte vertical transmission rates and effects on overwintering survival. With artificial inoculations for two host populations with two isolates per endophyte species, tested endophyte–host compatibility. Studied effects of isolates on host performances in greenhouse experiment with four water‐nutrients treatments.


    Correlation analysis revealed positive associations ofE. alsodesfrequency with July Max temperatures, July precipitation, and soil nitrogen and phosphorous and negative associations with insect damage and soil magnesium and potassium. Plants infected withE. alsodeshad increased overwintering survival compared to plants infected withE. schardliior uninfected (E−) plants. Artificial inoculations indicated thatE. alsodeshad better compatibility with a variety of host genotypes than didE. schardlii. The experiment with reciprocally inoculated plants grown under different treatments revealed a complexity of interactions among hosts, endophyte species, isolate within species, host plant origin, and environmental factors. Neither of the endophyte species increased plant biomass, but some of the isolates within each species had other effects on plant growth such as increased root:shoot ratio, number of tillers, and changes in plant height that might affect host fitness.

    Main conclusion

    In the absence of clear and consistent effects of the endophytes on host growth, the differences in endophyte‐mediated protection against herbivores may be the key factor determining distribution differences of the two endophyte species.

    more » « less
  2. Alexandre, Gladys (Ed.)
    ABSTRACT Environmental nontuberculous mycobacteria (NTM), with the potential to cause opportunistic lung infections, can reside in soil. This might be particularly relevant in Hawai’i, a geographic hot spot for NTM infections and whose soil composition differs from many other areas of the world. Soil components are likely to contribute to NTM prevalence in certain niches as food sources or attachment scaffolds, but the particular types of soils, clays, and minerals that impact NTM growth are not well-defined. Hawai’i soil and chemically weathered rock (saprolite) samples were examined to characterize the microbiome and quantify 11 mineralogical features as well as soil pH. Machine learning methods were applied to identify important soil features influencing the presence of NTM. Next, these features were directly tested in vitro by incubating synthetic clays and minerals in the presence of Mycobacteroides abscessus and Mycobacterium chimaera isolates recovered from the Hawai'i environment, and changes in bacterial growth were determined. Of the components examined, synthetic gibbsite, a mineral form of aluminum hydroxide, inhibited the growth of both M. abscessus and M. chimaera , while other minerals tested showed differential effects on each species. For example, M. abscessus (but not M. chimaera ) growth was significantly higher in the presence of hematite, an iron oxide mineral. In contrast, M. chimaera (but not M. abscessus ) counts were significantly reduced in the presence of birnessite, a manganese-containing mineral. These studies shed new light on the mineralogic features that promote or inhibit the presence of Hawai’i NTM in Hawai’i soil. IMPORTANCE Globally and in the United States, the prevalence of NTM pulmonary disease—a potentially life-threatening but underdiagnosed chronic illness—is prominently rising. While NTM are ubiquitous in the environment, including in soil, the specific soil components that promote or inhibit NTM growth have not been elucidated. We hypothesized that NTM culture-positive soil contains minerals that promote NTM growth in vitro . Because Hawai’i is a hot spot for NTM and a unique geographic archipelago, we examined the composition of Hawai’i soil and identified individual clay, iron, and manganese minerals associated with NTM. Next, individual components were evaluated for their ability to directly modulate NTM growth in culture. In general, gibbsite and some manganese oxides were shown to decrease NTM, whereas iron-containing minerals were associated with higher NTM counts. These data provide new information to guide future analyses of soil-associated factors impacting persistence of these soil bacteria. 
    more » « less
  3. Abstract Background

    Sepsis is a highly heterogeneous syndrome, which has hindered the development of effective therapies. This has prompted investigators to develop a precision medicine approach aimed at identifying biologically homogenous subgroups of patients with septic shock and critical illnesses. Transcriptomic analysis can identify subclasses derived from differences in underlying pathophysiological processes that may provide the basis for new targeted therapies. The goal of this study was to elucidate pathophysiological pathways and identify pediatric septic shock subclasses based on whole blood RNA expression profiles.


    The subjects were critically ill children with cardiopulmonary failure who were a part of a prospective randomized insulin titration trial to treat hyperglycemia. Genome-wide expression profiling was conducted using RNA sequencing from whole blood samples obtained from 46 children with septic shock and 52 mechanically ventilated noninfected controls without shock. Patients with septic shock were allocated to subclasses based on hierarchical clustering of gene expression profiles, and we then compared clinical characteristics, plasma inflammatory markers, cell compositions using GEDIT, and immune repertoires using Imrep between the two subclasses.


    Patients with septic shock depicted alterations in innate and adaptive immune pathways. Among patients with septic shock, we identified two subtypes based on gene expression patterns. Compared with Subclass 2, Subclass 1 was characterized by upregulation of innate immunity pathways and downregulation of adaptive immunity pathways. Subclass 1 had significantly worse clinical outcomes despite the two classes having similar illness severity on initial clinical presentation. Subclass 1 had elevated levels of plasma inflammatory cytokines and endothelial injury biomarkers and demonstrated decreased percentages of CD4 T cells and B cells and less diverse T cell receptor repertoires.


    Two subclasses of pediatric septic shock patients were discovered through genome-wide expression profiling based on whole blood RNA sequencing with major biological and clinical differences.

    Trial RegistrationThis is a secondary analysis of data generated as part of the observational CAF-PINT ancillary of the HALF-PINT study (NCT01565941). Registered March 29, 2012.

    more » « less
  4. Abstract Aim

    The study systematically compared the N2O-reducing functional performances and the genomic features of two N2O-reducing isolates, aimed to screen out effective N2O-reducing bacteria with strong environmental adaption, and explore the possible regulation.

    Methods and Results

    Two N2O reducers, namely, Pseudomonas veronii DM15 (DM15) and Pseudomonas frederiksbergensis DM22 (DM22), isolated from paddy soil were selected. Their N2O-reducing abilities, and nosZ gene transcript abundance were determined under different temperatures (20°C, 30°C, 40°C) and oxygen concentrations (0%, 10%, 21%), and the whole genomes were sequenced by Illumina sequencing. The results showed that both DM15 and DM22 exhibited the strongest N2O reducing activity at 30°C and under anaerobic conditions. In comparison, DM15 generally exhibited significantly higher N2O reducing abilities and nosZ gene expression than DM22 under all tested conditions. In addition, DM15 possessed obviously higher expression potentials (codon adaptation index (CAI) value) of nos genes than DM22, and the nos cluster of the former contained a transcriptional regulator gene of dnr, while the latter did not.


    The results indicate that DM15 showed obviously stronger N2O-reducing abilities than DM22 under various conditions, which might be closely associated with its dnr transcriptional regulator, and thus promoting the higher transcriptional activities of nos genes. Although anaerobic conditions were the optimal conditions for N2O reduction in both strains, DM15 still reduced a certain amount of N2O even under aerobic conditions.

    more » « less
  5. Abstract

    Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non‐urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non‐parasitized nestlings from urban (79%) and non‐urban (75%) nests did not differ significantly. However, parasitized, non‐urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15N) from urban nestling feces were higher than those from non‐urban nestlings, suggesting that urban nestlings are consuming more protein. δ15N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro‐inflammatory response (innate immunological resistance), compared to parasitized, non‐urban nestlings. In contrast, parasitized non‐urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro‐inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non‐urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.

    more » « less