skip to main content


Title: Electronic structure in a transition metal dipnictide TaAs 2
Abstract

The family of transition-metal dipnictides has been of theoretical and experimental interest because this family hosts topological states and extremely large magnetoresistance (MR). Recently,TaAs2, a member of this family, has been predicted to support a topological crystalline insulating state. Here, by using high-resolution angle-resolved photoemission spectroscopy (ARPES), we reveal both closed and open pockets in the metallic Fermi surface (FS) and linearly dispersive bands on the (201) surface, along with the presence of extreme MR observed from magneto-transport measurements. A comparison of the ARPES results with first-principles computations shows that the linearly dispersive bands on the measured surface ofTaAs2are trivial bulk bands. The absence of symmetry-protected surface state on the (201) surface indicates its topologically dark nature. The presence of open FS features suggests that the open-orbit fermiology could contribute to the extremely large MR ofTaAs2.

 
more » « less
Award ID(s):
1847962
NSF-PAR ID:
10473987
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Condensed Matter
Volume:
36
Issue:
7
ISSN:
0953-8984
Format(s):
Medium: X Size: Article No. 075502
Size(s):
["Article No. 075502"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are9.35.4+4.6and4.22.0+1.9Mpc2(Kkms1)1, respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength (U¯). Among them,U¯, ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity,U¯, and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ) in high-surface-density regions (Σ≥ 100Mpc−2), following the power-law relationsαCO(21)Σ0.5andαCO(10)Σ0.2. The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σas a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σis important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors.

     
    more » « less
  2. Abstract

    We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta (βp= 0.25) collisionless ion–electron shocks with mass ratiomi/me= 200, fast Mach numberMms=1–4, and upstream magnetic field angleθBn= 55°–85° from the shock normalnˆ. It is known that shock electron heating is described by an ambipolar,B-parallel electric potential jump, Δϕ, that scales roughly linearly with the electron temperature jump. Our simulations haveΔϕ/(0.5miush2)0.1–0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measureϕ, including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate ofϕin our low-βpshocks. We further focus on twoθBn= 65° shocks: aMs=4(MA=1.8) case with a long, 30diprecursor of whistler waves alongnˆ, and aMs=7(MA=3.2) case with a shorter, 5diprecursor of whistlers oblique to bothnˆandB;diis the ion skin depth. Within the precursors,ϕhas a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of theMs=4,θBn= 65° case,ϕshows a weak dependence on the electron plasma-to-cyclotron frequency ratioωpece, andϕdecreases by a factor of 2 asmi/meis raised to the true proton–electron value of 1836.

     
    more » « less
  3. Abstract

    We compare 500 pc scale, resolved observations of ionized and molecular gas for thez∼ 0.02 starbursting disk galaxy IRAS08339+6517, using measurements from KCWI and NOEMA. We explore the relationship of the star-formation-driven ionized gas outflows with colocated galaxy properties. We find a roughly linear relationship between the outflow mass flux (Σ̇out) and star formation rate surface density (ΣSFR),Σ̇outΣSFR1.06±0.10, and a strong correlation betweenΣ̇outand the gas depletion time, such thatΣ̇outtdep1.1±0.06. Moreover, we find these outflows are so-calledbreakoutoutflows, according to the relationship between the gas fraction and disk kinematics. Assuming that ionized outflow mass scales with total outflow mass, our observations suggest that the regions of highest ΣSFRin IRAS08 are removing more gas via the outflow than through the conversion of gas into stars. Our results are consistent with a picture in which the outflow limits the ability of a region of a disk to maintain short depletion times. Our results underline the need for resolved observations of outflows in more galaxies.

     
    more » « less
  4. Abstract

    Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral atz> 7 and largely ionized byz∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volume-averaged neutral fraction of the IGM is either relatively low (x¯HI103) or close to unity (x¯HI1). In particular, the neutral fraction evolution of the IGM at the critical redshift range ofz= 6–7 is poorly constrained. We present new constraints onx¯HIatz∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z< 7.09. We derive model-independent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyαand Lyβforests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first model-independent constraints on the IGM neutral hydrogen fraction atz∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits ofx¯HI(z=6.3)<0.79±0.04(1σ),x¯HI(z=6.5)<0.87±0.03(1σ), andx¯HI(z=6.7)<0.940.09+0.06(1σ). The dark pixel fractions atz> 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018.

     
    more » « less
  5. Abstract

    We have observed electron impact fluorescence from CO2to excite the Cameron bands (CBs), CO (a3Π →X1Σ+; 180–280 nm), the first-negative group (1NG) bands, CO+(B2Σ+X2Σ+; 180–320 nm), the fourth-positive group (4PG) bands, CO (A1Π →X1Σ+; 111–280 nm), and the UV doublet, CO2+(B˜2Σu+X˜2Πg;288.3 and 289.6 nm) in the ultraviolet (UV). This wavelength range matches the spectral region of past and present spacecraft equipped to observe UV dayglow and aurora emissions from the thermospheres (100–300 km) of Mars and Venus. Our large vacuum system apparatus is able to measure the emission cross sections of the strongest optically forbidden UV transitions found in planetary spectra. Based on our cross-sectional measurements, previous CB emission cross-sectional errors exceed a factor of 3. The UV doublet lifetime is perturbed throughB˜2Σu+A˜2Πuspin–orbit coupling. Forward modeling codes of the Mars dayglow have not been accurate in the mid-UV due to systematic errors in these two emission cross sections. We furnish absolute emission cross sections for several band systems over electron energies 20–100 eV for CO2. We present a CB lifetime, which together with emission cross sections, furnish a set of fundamental physical constants for electron transport codes such as AURIC (Atmospheric Ultraviolet Radiance Integrated Code). AURIC and Trans-Mars are used in the analysis of UV spectra from the Martian dayglow and aurora.

     
    more » « less