Inteins, often referred to as protein introns, are highly mobile genetic elements that invade conserved genes throughout the tree of life. Inteins have been found to invade a wide variety of key genes within actinophages. While in the process of conducting a survey of these inteins in actinophages, we discovered that one protein family of methylases contained a putative intein, and two other unique insertion elements. These methylases are known to occur commonly in phages as orphan methylases (possibly as a form of resistance to restriction–modification systems). We found that the methylase family is not conserved within phage clusters and has a disparate distribution across divergent phage groups. We determined that two of the three insertion elements have a patchy distribution within the methylase protein family. Additionally, we found that the third insertion element is likely a second homing endonuclease, and that all three elements (the intein, the homing endonuclease, and what we refer to as the ShiLan domain) have different insertion sites that are conserved in the methylase gene family. Furthermore, we find strong evidence that both the intein and ShiLan domain are partaking in long-distance horizontal gene transfer events between divergent methylases in disparate phage hosts within the already dispersed methylase distribution. The reticulate evolutionary history of methylases and their insertion elements reveals high rates of gene transfer and within-gene recombination in actinophages.
more »
« less
Neighboring inteins interfere with one another's homing capacity
Abstract Inteins are mobile genetic elements that invade conserved genes across all domains of life and viruses. In some instances, a single gene will have several intein insertion sites. In Haloarchaea, the minichromosome maintenance (MCM) protein at the core of replicative DNA helicase contains four intein insertion sites within close proximity, where two of these sites (MCM-a and MCM-d) are more likely to be invaded. A haloarchaeon that harbors both MCM-a and MCM-d inteins, Haloferax mediterranei, was studied in vivo to determine intein invasion dynamics and the interactions between neighboring inteins. Additionally, invasion frequencies and the conservation of insertion site sequences in 129 Haloferacales mcm homologs were analyzed to assess intein distribution across the order. We show that the inteins at MCM-a and MCM-d recognize and cleave their respective target sites and, in the event that only one empty intein invasion site is present, readily initiate homing (i.e. single homing). However, when two inteins are present co-homing into an intein-free target sequence is much less effective. The two inteins are more effective when invading alleles that already contain an intein at one of the two sites. Our in vivo and computational studies also support that having a proline in place of a serine as the first C-terminal extein residue of the MCM-d insertion site prevents successful intein splicing, but does not stop recognition of the insertion site by the intein's homing endonuclease.
more »
« less
- Award ID(s):
- 1716046
- PAR ID:
- 10474005
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- PNAS Nexus
- Volume:
- 2
- Issue:
- 11
- ISSN:
- 2752-6542
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Two‐dimensional MFI zeolite nanosheets contain Brønsted acid sites partially confined at the intercept between micro‐ and mesopores. These acid sites exhibit exceptional reactivities and stabilities for C=C bond coupling and ring‐closure reactions that transform light aldehydes to aromatics. These sites are much more effective than those confined within the micropores of MFI crystallites and those unconfined on H4SiW12O40clusters or mesoporous aluminosilicate Al‐MCM‐41. The partially confined site environment solvates and stabilizes the transition states of the kinetically relevant steps during aromatization.more » « less
-
Consumer "multi-homing" (watching two TV channels, or buying two news magazines) has surprisingly important effects on market equilibrium and performance in (two-sided) media markets. We show this by introducing consumer multi-homing and advertising-finance into the classic circle model of product differentiation. When consumers multi-home (attend more than one platform), media platforms can charge only incremental-value prices to advertisers. Entry or merger leaves consumer prices unchanged under consumer multi-homing, but leaves advertiser prices unchanged under single-homing: multi-homing flips the side of the market on which platforms compete. In contrast to standard circle results, equilibrium product variety can be insufficient under multi-homing.more » « less
-
Abstract Ni cation sites exchanged onto microporous materials catalyze ethene oligomerization to butenes and heavier oligomers but also undergo rapid deactivation. The use of mesoporous supports has been reported previously to alleviate deactivation in regimes of high ethene pressures and low temperatures that cause capillary condensation of ethene within mesoporous voids. Here, we reproduce these prior findings on mesoporous Ni‐MCM‐41 and report that, in sharp contrast, reaction conditions that nominally correspond to ethene capillary condensation in microporous Ni‐Beta or Ni‐FAU zeolites do not mitigate deactivation, likely because confinement within microporous voids restricts the formation of condensed phases of ethene that are effective at solvating and desorbing heavier intermediates that are precursors to deactivation. Deactivation rates are found to transition from a first‐order to a second‐order dependence on Ni site density in Ni‐FAU zeolites with increasing ethene pressure, suggesting a transition in the dominant deactivation mechanism involving a single Ni site to one involving two Ni sites, reminiscent of the effects of increasing H2pressure on changing the kinetic order of deactivation in our prior work on Ni‐Beta zeolites.more » « less
-
‘Disintegration’—the reversal of transposon DNA integration at a target site—is regarded as an abortive off-pathway reaction. Here, we challenge this view with a biochemical investigation of the mechanism of protospacer insertion, which is mechanistically analogous to DNA transposition, by the Streptococcus pyogenes Cas1-Cas2 complex. In supercoiled target sites, the predominant outcome is the disintegration of one-ended insertions that fail to complete the second integration event. In linear target sites, one-ended insertions far outnumber complete protospacer insertions. The second insertion event is most often accompanied by the disintegration of the first, mediated either by the 3′-hydroxyl exposed during integration or by water. One-ended integration intermediates may mature into complete spacer insertions via DNA repair pathways that are also involved in transposon mobility. We propose that disintegration-promoted integration is functionally important in the adaptive phase of CRISPR-mediated bacterial immunity, and perhaps in other analogous transposition reactions.more » « less