skip to main content


This content will become publicly available on November 14, 2024

Title: Capillary zone electrophoresis‐high field asymmetric ion mobility spectrometry‐tandem mass spectrometry for top‐down characterization of histone proteoforms
Abstract

Characterization of histone proteoforms with various post‐translational modifications (PTMs) is critical for a better understanding of functions of histone proteoforms in epigenetic control of gene expression. Mass spectrometry (MS)‐based top‐down proteomics (TDP) is a valuable approach for delineating histone proteoforms because it can provide us with a bird's‐eye view of histone proteoforms carrying diverse combinations of PTMs. Here, we present the first example of coupling capillary zone electrophoresis (CZE), ion mobility spectrometry (IMS), and MS for online multi‐dimensional separations of histone proteoforms. Our CZE‐high‐field asymmetric waveform IMS (FAIMS)‐MS/MS platform identified 366 (ProSight PD) and 602 (TopPIC) histone proteoforms from a commercial calf histone sample using a low microgram amount of histone sample as the starting material. CZE‐FAIMS‐MS/MS improved the number of histone proteoform identifications by about 3 folds compared to CZE‐MS/MS alone (without FAIMS). The results indicate that CZE‐FAIMS‐MS/MS could be a useful tool for comprehensive characterization of histone proteoforms with high sensitivity.

 
more » « less
NSF-PAR ID:
10474024
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
PROTEOMICS
Volume:
24
Issue:
3-4
ISSN:
1615-9853
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mass spectrometry (MS)-based spatially resolved top-down proteomics (TDP) of tissues is crucial for understanding the roles played by microenvironmental heterogeneity in the biological functions of organs and for discovering new proteoform biomarkers of diseases. There are few published spatially resolved TDP studies. One of the challenges relates to the limited performance of TDP for the analysis of spatially isolated samples using, for example, laser capture microdissection (LCM) because those samples are usually mass-limited. We present the first pilot study of LCM-capillary zone electrophoresis (CZE)-MS/MS for spatially resolved TDP and used zebrafish brain as the sample. The LCM-CZE-MS/MS platform employed a non-ionic detergent and a freeze–thaw method for efficient proteoform extraction from LCM isolated brain sections followed by CZE-MS/MS without any sample cleanup step, ensuring high sensitivity. Over 400 proteoforms were identified in a CZE-MS/MS analysis of one LCM brain section via consuming the protein content of roughly 250 cells. We observed drastic differences in proteoform profiles between two LCM brain sections isolated from the optic tectum (Teo) and telencephalon (Tel) regions. Proteoforms of three proteins (npy, penkb, and pyya) having neuropeptide hormone activity were exclusively identified in the isolated Tel section. Proteoforms of reticulon, myosin, and troponin were almost exclusively identified in the isolated Teo section, and those proteins play essential roles in visual and motor activities. The proteoform profiles accurately reflected the main biological functions of the Teo and Tel regions of the brain. Additionally, hundreds of post-translationally modified proteoforms were identified. 
    more » « less
  2. Mass spectrometry (MS)-based denaturing top-down proteomics (dTDP) identify proteoforms without pretreatment of enzyme proteolysis. A universal sample preparation method that can efficiently extract protein, reduce sample loss, maintain protein solubility, and be compatible with following up liquid-phase separation, MS, and tandem MS (MS/MS) is vital for large-scale proteoform characterization. Membrane ultrafiltration (MU) was employed here for buffer exchange to efficiently remove the sodium dodecyl sulfate (SDS) detergent in protein samples used for protein extraction and solubilization, followed by capillary zone electrophoresis (CZE)-MS/MS analysis. The MU method showed good protein recovery, minimum protein bias, and nice compatibility with CZE-MS/MS. Single-shot CZE-MS/MS analysis of an Escherichia coli sample prepared by the MU method identified over 800 proteoforms. 
    more » « less
  3. Abstract

    Histone post‐translational modifications (PTMs) play important roles in many biological processes, including gene regulation and chromatin dynamics, and are thus of high interest across many fields of biological research. Chromatin immunoprecipitation coupled with sequencing (ChIP‐seq) is a powerful tool to profile histone PTMsin vivo. This method, however, is largely dependent on the specificity and availability of suitable commercial antibodies. While mass spectrometry (MS)–based proteomic approaches to quantitatively measure histone PTMs have been developed in mammals and several other model organisms, such methods are currently not readily available in plants. One major challenge for the implementation of such methods in plants has been the difficulty in isolating sufficient amounts of pure, high‐quality histones, a step rendered difficult by the presence of the cell wall. Here, we developed a high‐yielding histone extraction and purification method optimized forArabidopsis thalianathat can be used to obtain high‐quality histones for MS. In contrast to other methods used in plants, this approach is relatively simple, and does not require membranes or additional specialized steps, such as gel excision or chromatography, to extract highly purified histones. We also describe methods for producing MS‐ready histone peptides through chemical labeling and digestion. Finally, we describe an optimized method to quantify and analyze the resulting histone PTM data using a modified version of EpiProfile 2.0 for Arabidopsis. In all, the workflow described here can be used to measure changes to histone PTMs resulting from various treatments, stresses, and time courses, as well as in different mutant lines. © 2022 Wiley Periodicals LLC.

    Basic Protocol 1: Nuclear isolation and histone acid extraction

    Basic Protocol 2: Peptide labeling, digestion, and desalting

    Basic Protocol 3: Histone HPLC‐MS/MS and data analysis

     
    more » « less
  4. null (Ed.)
    Mass spectrometry (MS)-based denaturing top-down proteomics (dTDP) requires high-capacity separation and extensive gas-phase fragmentation of proteoforms. Herein, we coupled capillary zone electrophoresis (CZE) to electron-capture collision-induced dissociation (ECciD) on an Agilent 6545 XT quadrupole time-of-flight (Q-TOF) mass spectrometer for dTDP for the first time. During ECciD, the protein ions were first fragmented using ECD, followed by further activation and fragmentation by applying a CID potential. In this pilot study, we optimized the CZE-ECciD method for small proteins (lower than 20 kDa) regarding the charge state of protein parent ions for fragmentation and the CID potential applied to maximize the protein backbone cleavage coverage and the number of sequence-informative fragment ions. The CZE-ECciD Q-TOF platform provided extensive backbone cleavage coverage for three standard proteins lower than 20 kDa from only single charge states in a single CZE-MS/MS run in the targeted MS/MS mode, including ubiquitin (97%, +7, 8.6 kDa), superoxide dismutase (SOD, 87%, +17, 16 kDa), and myoglobin (90%, +16, 17 kDa). The CZE-ECciD method produced comparable cleavage coverage of small proteins (i.e., myoglobin) with direct-infusion MS studies using electron transfer dissociation (ETD), activated ion-ETD, and combinations of ETD and collision-based fragmentation on high-end orbitrap mass spectrometers. The results render CZE-ECciD a new tool for dTDP to enhance both separation and gas-phase fragmentation of proteoforms. 
    more » « less
  5. null (Ed.)
    Mass spectrometry (MS)-based top-down proteomics (TDP) requires high-resolution separation of proteoforms before electrospray ionization (ESI)-MS and tandem mass spectrometry (MS/MS). Capillary isoelectric focusing (cIEF)-ESI-MS and MS/MS could be an ideal method for TDP because cIEF can enable separation of proteoforms based on their isoelectric points (pIs) with ultra-high resolution. cIEF-ESI-MS has been well-recognized for protein characterization since 1990s. However, the widespread adoption of cIEF-MS for the characterization of proteoforms had been impeded by several technical challenges, including the lack of highly sensitive and robust ESI interface for coupling cIEF to MS, ESI suppression of analytes from ampholytes, and the requirement of manual operations. In this mini review, we summarize the technical improvements of cIEF-ESI-MS for characterizing proteoforms and highlight some recent applications to hydrophobic proteins, urinary albumin variants, charge variants of monoclonal antibodies, and large-scale TDP of complex proteomes. 
    more » « less