skip to main content

Title: A Tilt in the Dark Matter Halo of the Galaxy

Recent observations of the stellar halo have uncovered the debris of an ancient merger, Gaia–Sausage–Enceladus (GSE), estimated to have occurred ≳8 Gyr ago. Follow-up studies have associated GSE with a large-scale tilt in the stellar halo that links two well-known stellar overdensities in diagonally opposing octants of the Galaxy (the Hercules–Aquila Cloud and Virgo Overdensity; HAC and VOD). In this paper, we study the plausibility of such unmixed merger debris persisting over several gigayears in the Galactic halo. We employ the simulated stellar halo from Naidu et al., which reproduces several key properties of the merger remnant, including the large-scale tilt. By integrating the orbits of these simulated stellar halo particles, we show that adoption of a spherical halo potential results in rapid phase mixing of the asymmetry. However, adopting a tilted halo potential preserves the initial asymmetry in the stellar halo for many gigayears. The asymmetry is preserved even when a realistic growing disk is added to the potential. These results suggest that HAC and VOD are long-lived structures that are associated with GSE and that the dark matter halo of the Galaxy is tilted with respect to the disk and aligned in the direction of HAC–VOD. Such halo–disk misalignment is common in modern cosmological simulations. Lastly, we study the relationship between the local and global stellar halo in light of a tilted global halo comprised of highly radial orbits. We find that the local halo offers a dynamically biased view of the global halo due to its displacement from the Galactic center.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
The Astrophysical Journal
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Modern Galactic surveys have revealed an ancient merger that dominates the stellar halo of our galaxy (Gaia–Sausage–Enceladus, GSE). Using chemical abundances and kinematics from the H3 Survey, we identify 5559 halo stars from this merger in the radial range r Gal = 6–60kpc. We forward model the full selection function of H3 to infer the density profile of this accreted component of the stellar halo. We consider a general ellipsoid with principal axes allowed to rotate with respect to the galactocentric axes, coupled with a multiply broken power law. The best-fit model is a triaxial ellipsoid (axes ratios 10:8:7) tilted 25° above the Galactic plane toward the Sun and a doubly broken power law with breaking radii at 12 kpc and 28 kpc. The doubly broken power law resolves a long-standing dichotomy in literature values of the halo breaking radius, being at either ∼15 kpc or ∼30 kpc assuming a singly broken power law. N -body simulations suggest that the breaking radii are connected to apocenter pile-ups of stellar orbits, and so the observed double-break provides new insight into the initial conditions and evolution of the GSE merger. Furthermore, the tilt and triaxiality of the stellar halo could imply that a fraction of the underlying dark matter halo is also tilted and triaxial. This has important implications for dynamical mass modeling of the galaxy as well as direct dark matter detection experiments. 
    more » « less
  2. Abstract Several lines of evidence suggest that the Milky Way underwent a major merger at z ∼ 2 with the Gaia-Sausage-Enceladus (GSE) galaxy. Here we use H3 Survey data to argue that GSE entered the Galaxy on a retrograde orbit based on a population of highly retrograde stars with chemistry similar to the largely radial GSE debris. We present the first tailored N -body simulations of the merger. From a grid of ≈500 simulations we find that a GSE with M ⋆ = 5 × 10 8 M ⊙ , M DM = 2 × 10 11 M ⊙ best matches the H3 data. This simulation shows that the retrograde stars are stripped from GSE’s outer disk early in the merger. Despite being selected purely on angular momenta and radial distributions, this simulation reproduces and explains the following phenomena: (i) the triaxial shape of the inner halo, whose major axis is at ≈35° to the plane and connects GSE’s apocenters; (ii) the Hercules-Aquila Cloud and the Virgo Overdensity, which arise due to apocenter pileup; and (iii) the 2 Gyr lag between the quenching of GSE and the truncation of the age distribution of the in situ halo, which tracks the lag between the first and final GSE pericenters. We make the following predictions: (i) the inner halo has a “double-break” density profile with breaks at both ≈15–18 kpc and 30 kpc, coincident with the GSE apocenters; and (ii) the outer halo has retrograde streams awaiting discovery at >30 kpc that contain ≈10% of GSE’s stars. The retrograde (radial) GSE debris originates from its outer (inner) disk—exploiting this trend, we reconstruct the stellar metallicity gradient of GSE (−0.04 ± 0.01 dex r 50 − 1 ). These simulations imply that GSE delivered ≈20% of the Milky Way’s present-day dark matter and ≈50% of its stellar halo. 
    more » « less
  3. Abstract

    The majority of the Milky Way’s stellar halo consists of debris from our galaxy’s last major merger, the Gaia-Sausage-Enceladus (GSE). In the past few years, stars from the GSE have been kinematically and chemically studied in the inner 30 kpc of our galaxy. However, simulations predict that accreted debris could lie at greater distances, forming substructures in the outer halo. Here we derive metallicities and distances using Gaia DR3 XP spectra for an all-sky sample of luminous red giant stars, and map the outer halo with kinematics and metallicities out to 100 kpc. We obtain follow-up spectra of stars in two strong overdensities—including the previously identified outer Virgo Overdensity—and find them to be relatively metal rich and on predominantly retrograde orbits, matching predictions from simulations of the GSE merger. We argue that these are apocentric shells of GSE debris, forming 60–90 kpc counterparts to the 15–20 kpc shells that are known to dominate the inner stellar halo. Extending our search across the sky with literature radial velocities, we find evidence for a coherent stream of retrograde stars encircling the Milky Way from 50 to 100 kpc, in the same plane as the Sagittarius Stream but moving in the opposite direction. These are the first discoveries of distant and structured imprints from the GSE merger, cementing the picture of an inclined and retrograde collision that built up our galaxy’s stellar halo.

    more » « less
  4. The vast majority of Milky Way stellar halo stars were likely accreted from a small number (<~3) of relatively large dwarf galaxy accretion events. However, the timing of these events is poorly constrained and predominantly relies on indirect dynamical mixing arguments or imprecise age measurements of stars associated with debris structures. Here, we aim to infer robust stellar ages for stars associated with galactic substructures to more directly constrain the merger history of the Galaxy. By combining kinematic, asteroseismic, and spectroscopic data where available, we infer stellar ages for a sample of 10 red giant stars that were kinematically selected to be within the stellar halo, a subset of which are associated with the Gaia–Enceladus–Sausage halo substructure, and compare their ages to 3 red giant stars in the Galactic disk. Despite systematic differences in both absolute and relative ages determined here, age rankings of stars in this sample are robust. Passing the same observable inputs to multiple stellar age determination packages, we measure a weighted average age for the Gaia–Enceladus–Sausage stars in our sample of 8+/-3 (stat.)+/-1 (sys.) Gyr. We also determine hierarchical ages using isochrones for the populations of Gaia–Enceladus–Sausage, in situ halo and disk stars, finding a Gaia–Enceladus–Sausage population age of 8.0+2.3-3.2 Gyr. Although we cannot distinguish hierarchical population ages of halo or disk structures with our limited data and sample of stars, this framework should allow a distinct characterization of Galactic substructures using larger stellar samples and additional data available in the near future 
    more » « less

    The Milky Way’s stellar disc can tilt in response to torques that result from infalling satellite galaxies and their associated tidal debris. In this work, we explore the dynamics of disc tilting by running N-body simulations of mergers in an isolated, isotropic Milky Way-like host galaxy, varying over satellite virial mass, initial position, and orbit. We develop and validate a first-principles understanding of the dynamics that govern how the host galaxy’s stellar disc responds to the satellite’s dark matter (DM) debris. We find that the degree of disc tilting can be large for cosmologically motivated merger histories. In particular, our results suggest that the Galactic disc may still be tilting in response to Gaia-Sausage-Enceladus, one of the most significant recent mergers in the Milky Way’s history. These findings have implications for terrestrial direct detection experiments as disc tilting changes the relative location of the Sun with respect to DM substructure left behind by a merging galaxy.

    more » « less