skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Approximate Confidence Distribution Computing
Approximate confidence distribution computing (ACDC) offers a new take on the rapidly developing field of likelihood-free inference from within a frequentist framework. The appeal of this computational method for statistical inference hinges upon the concept of a confidence distribution, a special type of estimator which is defined with respect to the repeated sampling principle. An ACDC method provides frequentist validation for computational inference in problems with unknown or intractable likelihoods. The main theoretical contribution of this work is the identification of a matching condition necessary for frequentist validity of inference from this method. In addition to providing an example of how a modern understanding of confidence distribution theory can be used to connect Bayesian and frequentist inferential paradigms, we present a case to expand the current scope of so-called approximate Bayesian inference to include non-Bayesian inference by targeting a confidence distribution rather than a posterior. The main practical contribution of this work is the development of a data-driven approach to drive ACDC in both Bayesian or frequentist contexts. The ACDC algorithm is data-driven by the selection of a data-dependent proposal function, the structure of which is quite general and adaptable to many settings. We explore three numerical examples that both verify the theoretical arguments in the development of ACDC and suggest instances in which ACDC outperform approximate Bayesian computing methods computationally.  more » « less
Award ID(s):
2015373
PAR ID:
10474125
Author(s) / Creator(s):
; ;
Publisher / Repository:
New England Statistical Society
Date Published:
Journal Name:
The New England Journal of Statistics in Data Science
ISSN:
2693-7166
Page Range / eLocation ID:
270 to 282
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A flexible conformal inference method is developed to construct confidence intervals for the frequencies of queried objects in very large data sets, based on a much smaller sketch of those data. The approach is data-adaptive and requires no knowledge of the data distribution or of the details of the sketching algorithm; instead, it constructs provably valid frequentist confidence intervals under the sole assumption of data exchangeability. Although our solution is broadly applicable, this paper focuses on applications involving the count-min sketch algorithm and a non-linear variation thereof. The performance is compared to that of frequentist and Bayesian alternatives through simulations and experiments with data sets of SARS-CoV-2 DNA sequences and classic English literature. 
    more » « less
  2. This paper discusses how two classes of approximate computation algorithms can be adapted, in a modular fashion, to achieve exact statistical inference from differentially private data products. Considered are approximate Bayesian computation for Bayesian inference, and Monte Carlo Expectation-Maximization for likelihood inference. Up to Monte Carlo error, inference from these algorithms is exact with respect to the joint specification of both the analyst's original data model, and the curator's differential privacy mechanism. Highlighted is a duality between approximate computation on exact data, and exact computation on approximate data, which can be leveraged by a well-designed computational procedure for statistical inference. 
    more » « less
  3. Abstract We consider Bayesian inference for large-scale inverse problems, where computational challenges arise from the need for repeated evaluations of an expensive forward model. This renders most Markov chain Monte Carlo approaches infeasible, since they typically require O ( 1 0 4 ) model runs, or more. Moreover, the forward model is often given as a black box or is impractical to differentiate. Therefore derivative-free algorithms are highly desirable. We propose a framework, which is built on Kalman methodology, to efficiently perform Bayesian inference in such inverse problems. The basic method is based on an approximation of the filtering distribution of a novel mean-field dynamical system, into which the inverse problem is embedded as an observation operator. Theoretical properties are established for linear inverse problems, demonstrating that the desired Bayesian posterior is given by the steady state of the law of the filtering distribution of the mean-field dynamical system, and proving exponential convergence to it. This suggests that, for nonlinear problems which are close to Gaussian, sequentially computing this law provides the basis for efficient iterative methods to approximate the Bayesian posterior. Ensemble methods are applied to obtain interacting particle system approximations of the filtering distribution of the mean-field model; and practical strategies to further reduce the computational and memory cost of the methodology are presented, including low-rank approximation and a bi-fidelity approach. The effectiveness of the framework is demonstrated in several numerical experiments, including proof-of-concept linear/nonlinear examples and two large-scale applications: learning of permeability parameters in subsurface flow; and learning subgrid-scale parameters in a global climate model. Moreover, the stochastic ensemble Kalman filter and various ensemble square-root Kalman filters are all employed and are compared numerically. The results demonstrate that the proposed method, based on exponential convergence to the filtering distribution of a mean-field dynamical system, is competitive with pre-existing Kalman-based methods for inverse problems. 
    more » « less
  4. Gaussian processes (GPs) offer a flexible class of priors for nonparametric Bayesian regression, but popular GP posterior inference methods are typically prohibitively slow or lack desirable finite-data guarantees on quality. We develop a scalable approach to approximate GP regression, with finite-data guarantees on the accuracy of our pointwise posterior mean and variance estimates. Our main contribution is a novel objective for approximate inference in the nonparametric setting: the preconditioned Fisher (pF) divergence. We show that unlike the Kullback–Leibler divergence (used in variational inference), the pF divergence bounds bounds the 2-Wasserstein distance, which in turn provides tight bounds on the pointwise error of mean and variance estimates. We demonstrate that, for sparse GP likelihood approximations, we can minimize the pF divergence bounds efficiently. Our experiments show that optimizing the pF divergence bounds has the same computational requirements as variational sparse GPs while providing comparable empirical performance—in addition to our novel finite-data quality guarantees. 
    more » « less
  5. We propose a novel modular inference approach combining two different generative models — generative adversarial networks (GAN) and normalizing flows — to approximate the posterior distribution of physics-based Bayesian inverse problems framed in high-dimensional ambient spaces. We dub the proposed framework GAN-Flow. The proposed method leverages the intrinsic dimension reduction and superior sample generation capabilities of GANs to define a low-dimensional data-driven prior distribution. Once a trained GAN-prior is available, the inverse problem is solved entirely in the latent space of the GAN using variational Bayesian inference with normalizing flow-based variational distribution, which approximates low-dimensional posterior distribution by transforming realizations from the low-dimensional latent prior (Gaussian) to corresponding realizations of a low-dimensional variational posterior distribution. The trained GAN generator then maps realizations from this approximate posterior distribution in the latent space back to the high-dimensional ambient space. We also propose a two-stage training strategy for GAN-Flow wherein we train the two generative models sequentially. Thereafter, GAN-Flow can estimate the statistics of posterior-predictive quantities of interest at virtually no additional computational cost. The synergy between the two types of generative models allows us to overcome many challenges associated with the application of Bayesian inference to large-scale inverse problems, chief among which are describing an informative prior and sampling from the high-dimensional posterior. GAN-Flow does not involve Markov chain Monte Carlo simulation, making it particularly suitable for solving large-scale inverse problems. We demonstrate the efficacy and flexibility of GAN-Flow on various physics-based inverse problems of varying ambient dimensionality and prior knowledge using different types of GANs and normalizing flows. Notably, one of the applications we consider involves a 65,536-dimensional inverse problem of phase retrieval wherein an object is reconstructed from sparse noisy measurements of the magnitude of its Fourier transform. 
    more » « less