skip to main content


Title: Advances in the reconstruction of the spider tree of life: A roadmap for spider systematics and comparative studies
Abstract

In the last decade and a half, advances in genetic sequencing technologies have revolutionized systematics, transforming the field from studying morphological characters or a few genetic markers, to genomic datasets in the phylogenomic era. A plethora of molecular phylogenetic studies on many taxonomic groups have come about, converging on, or refuting prevailing morphology or legacy‐marker‐based hypotheses about evolutionary affinities. Spider systematics has been no exception to this transformation and the inter‐relationships of several groups have now been studied using genomic data. About 51 500 extant spider species have been described, all with a conservative body plan, but innumerable morphological and behavioural peculiarities. Inferring the spider tree of life using morphological data has been a challenging task. Molecular data have corroborated many hypotheses of higher‐level relationships, but also resulted in new groups that refute previous hypotheses. In this review, we discuss recent advances in the reconstruction of the spider tree of life and highlight areas where additional effort is needed with potential solutions. We base this review on the most comprehensive spider phylogeny to date, representing 131 of the 132 spider families. To achieve this sampling, we combined six Sanger‐based markers with newly generated and publicly available genome‐scale datasets. We find that some inferred relationships between major lineages of spiders (such as Austrochiloidea, Palpimanoidea and Synspermiata) are robust across different classes of data. However, several new hypotheses have emerged with different classes of molecular data. We identify and discuss the robust and controversial hypotheses and compile this blueprint to design future studies targeting systematic revisions of these problematic groups. We offer an evolutionary framework to explore comparative questions such as evolution of venoms, silk, webs, morphological traits and reproductive strategies.

 
more » « less
NSF-PAR ID:
10474358
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Cladistics
Volume:
39
Issue:
6
ISSN:
0748-3007
Format(s):
Medium: X Size: p. 479-532
Size(s):
["p. 479-532"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: The importance of morphology in the phylogenomic era has recently gained attention, but relatively few studies have combined both types of information when inferring phylogenetic relationships. Sanger sequencing legacy data can also be important for understanding evolutionary relationships. The possibility of combining genomic, morphological and Sanger data in one analysis seems compelling, permitting a more complete sampling and yielding a comprehensive view of the evolution of a group. Here we used these three data types to elucidate the systematics and evolution of the Dionycha, a highly diverse group of spiders relatively underrepresented in phylogenetic studies. The datasets were analyzed separately and combined under different inference methods, including a novel approach for analyzing morphological matrices with commonly used evolutionary models. We tested alternative hypotheses of relationships and performed simulations to investigate the accuracy of our findings. We provide a comprehensive and thorough phylogenetic hypothesis for Dionycha that can serve as a robust framework to test hypotheses about the evolution of key characters. We also show that morphological data might have a phylogenetic impact, even when massively outweighed by molecular data. Our approach to analyze morphological data may serve as an alternative to the proposed practice of arbitrarily partitioning, weighting, and choosing between parsimony and stochastic models. As a result of our findings, we propose Trachycosmidae new rank for a group of Australian genera formerly included in Trochanteriidae and Gallieniellidae, and consider Ammoxenidae as a junior synonym of Gnaphosidae. We restore the family rank for Prodidomidae, but transfer the subfamily Molycriinae to Gnaphosidae. Drassinella is transferred to Liocranidae, Donuea to Corinnidae, and Mahafalytenus to Viridasiidae. 
    more » « less
  2. Abstract

    Relationships among spider families that lack support through other lines of evidence (e.g., morphology) have recently been uncovered through molecular phylogenetics. One such group is the “marronoid” clade, which contains about 3,400 described species in 9 families. Marronoids run the gamut of life history strategies, with social species, species producing a variety of silk types, and species occurring in a range of extreme environments. Despite recognition of the ecological variability in the group, there remains uncertainty about family- level relationships, leaving diverse ecologies without an evolutionary context. The phylogenies produced to date have relatively low nodal support, there are few defined morphological synapomorphies, and the internal relationships of many families remain unclear. We use 93 exemplars from all marronoid families and ultraconserved element loci captured in silico from a combination of 48 novel low-coverage whole genomes and genomic data from the Sequence Read Archive (SRA) to produce a 50% occupancy matrix of 1,277 loci from a set of ultraconserved element probes. These loci were used to infer a phylogeny of the marronoid clade and to evaluate the familial relationships within the clade, and were combined with single-locus (Sanger) legacy data to further increase taxonomic sampling. Our results indicate a clearly defined and well-supported marronoid clade and provide evidence for both monophyly and paraphyly within the currently defined families of the clade. We propose taxonomic changes in accordance with the resulting phylogenetic hypothesis, including elevating Cicurinidae (restored status) and Macrobunidae (new rank).

     
    more » « less
  3. Abstract

    Spider wasps (Hymenoptera: Pompilidae) cleptoparasites, such asCeropalesLatreille, have evolved the ability to steal the spiders from other pompilids. This behaviour is often observed with morphological adaptations that might mislead taxonomic decisions due to convergence. For instance, four subgenera,BifidoceropalesWolf,Ceropaless. str.,HemiceropalesWolf andPriesneriusMóczár and six species‐groups are recognized withinCeropales; all with doubtful identification. We studied species ofCeropalesin light of molecular and morphological characters to delimit lineages and to test the applicability of morphological traits in diagnosing them. We used the molecular nuclear markers long‐wavelength rhodopsin and 28S ribosomal RNA, and the mitochondrial Cytochrome C Oxidase I available at Genebank to reconstruct Bayesian and maximum likelihood phylogenetic trees. Our results disagree with the current subgeneric classification. We found that fore wing venation and the shape of the female posterior metasomal segments are key characters to differentiate lineages. We discuss morphological evolution of the sting apparatus using ancestral state reconstructions; and we proposeBifidoceropalesas a junior subjective synonym ofCeropaless. str., whereasPriesnerius, stat. resurr. andHemiceropalesare redefined based on male and female morphological traits. This study raises important concerns, from the validity of diagnostic characters currently used to identify cleptoparasite spider wasps—and taxa with habitat constraints leading to homoplasies. Taxonomy can benefit from the reconstruction of ancestral traits by revealing reliable diagnostic characters. Moreover, our investigation provides a framework for evolutionary studies on hymenopteran cleptoparasitoids and sets the basis for future phylogenomic investigations onCeropalesby opening new perspectives for taxonomic acts and guiding taxonomic sampling efforts.

     
    more » « less
  4. Abstract

    Uncovering the evolutionary history of the subfamilies Ectatomminae and Heteroponerinae, or ectaheteromorphs, is key to understanding a major branch of the ant tree of life. Despite their diversity and ecological importance, phylogenetic relationships in the group have not been well explored. One particularly suitable tool for resolving phylogeny is the use of ultraconserved elements (UCEs), which have been shown to be ideal markers at a variety of evolutionary time scales. In the present study, we enriched and sequenced 2,127 UCEs from 135 specimens of ectaheteromorph ants and investigated phylogeny using a variety of model-based phylogenomic methods. Trees recovered from partitioned maximum-likelihood and species-tree analyses were well resolved and largely congruent. The results are consistent with an expanded concept of Ectatomminae that now includes the subfamily Heteroponerinae new synonym and its single tribe Heteroponerini new combination. Eleven monophyletic groups are recognized as genera: Acanthoponera, Alfariastatus revived, Boltonia Camacho and Feitosa new genus, Ectatomma, Gnamptogenys, Heteroponera, Holcoponerastatus revived, Poneracanthastatus revived, Rhytidoponera, Stictoponerastatus revived, and Typhlomyrmex. The new phylogenetic framework and classification proposed here will shed light on the study of Ectatomminae taxonomy and systematics, as well as on the morphological evolution of the groups that it comprises.

     
    more » « less
  5. Abstract

    Phenotypic data are crucial for understanding genotype–phenotype relationships, assessing the tree of life and revealing trends in trait diversity over time. Large‐scale description of whole organisms for quantitative analyses (phenomics) presents several challenges, and technological advances in the collection of genomic data outpace those for phenomic data. Reasons for this disparity include the time‐consuming and expensive nature of collecting discrete phenotypic data and mining previously published data on a given species (both often requiring anatomical expertise across taxa), and computational challenges involved with analysing high‐dimensional datasets.

    One approach to building approximations of organismal phenomes is to combine published datasets of discrete characters assembled for phylogenetic analyses into a phenomic dataset. Despite a wealth of legacy datasets in the literature for many groups, relatively few methods exist for automating the assembly, analysis, and visualization of phenomic datasets in phylogenetic contexts. Here, we introduce a newrpackagephenotoolsfor integrating (fusing original or legacy datasets), curating (finding and removing duplicates) and visualizing phenomic datasets.

    We demonstrate the utility of the proposed toolkit with a morphological dataset for flightless birds and two morphological datasets for theropod dinosaurs and provide recommendations for character construction to maximize accessibility in future workflows. Visualization tools allow rapid identification of anatomical subregions with difficult or problematic histories of homology.

    We anticipate these tools aiding automation of the assembly and visualization of phenomic datasets to inform evolutionary relationships and rates of phenotypic evolution.

     
    more » « less