skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension

Abstract. Heterogeneous ice nucleation is thought to be the primary pathway for the formation of ice in mixed-phase clouds, with the number of active ice-nucleating particles (INPs) increasing rapidly with decreasing temperature. Here, molecular-dynamics simulations of heterogeneous ice nucleation demonstrate that the ice nucleation rate is also sensitive to pressure and that negative pressure within supercooled water shifts freezing temperatures to higher temperatures. Negative pressure, or tension, occurs naturally in water capillary bridges and pores and can also result from water agitation. Capillary bridge simulations presented in this study confirm that negative Laplace pressure within the water increases heterogeneous-freezing temperatures. The increase in freezing temperatures with negative pressure is approximately linear within the atmospherically relevant range of 1 to −1000 atm. An equation describing the slope depends on the latent heat of freezing and the molar volume difference between liquid water and ice. Results indicate that negative pressures of −500 atm, which correspond to nanometer-scale water surface curvatures, lead to a roughly 4 K increase in heterogeneous-freezing temperatures. In mixed-phase clouds, this would result in an increase of approximately 1 order of magnitude in active INP concentrations. The findings presented here indicate that any process leading to negative pressure in supercooled water may play a role in ice formation, consistent with experimental evidence of enhanced ice nucleation due to surface geometry or mechanical agitation of water droplets. This points towards the potential for dynamic processes such as contact nucleation and droplet collision or breakup to increase ice nucleation rates through pressure perturbations.

 
more » « less
Award ID(s):
2019649
NSF-PAR ID:
10474417
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
EGU
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
23
Issue:
18
ISSN:
1680-7324
Page Range / eLocation ID:
10625 to 10642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Some biological particles, such as Snomax, are very active ice nucleating particles, inducing heterogeneous freezing in supercooled water at temperatures above −15 and up to −2 °C. Despite their exceptional freezing abilities, large uncertainties remain regarding the atmospheric abundance of biological ice nucleating particles, and their contribution to atmospheric ice nucleation. It has been suggested that small biological ice nucleating macromolecules or fragments can be carried on the surfaces of dust and other atmospheric particles. This could combine the atmospheric abundance of dust particles with the ice nucleating strength of biological material to create strongly enhanced and abundant ice nucleating surfaces in the atmosphere, with significant implications for the budget and distribution of atmospheric ice nucleating particles, and their consequent effects on cloud microphysics and mixed-phase clouds. The new critical surface area g framework that was developed by Beydoun et al. (2016) is extended to produce a heterogeneous ice nucleation mixing model that can predict the freezing behavior of multicomponent particle surfaces immersed in droplets. The model successfully predicts the immersion freezing properties of droplets containing Snomax bacterial particles across a mass concentration range of 7 orders of magnitude, by treating Snomax as comprised of two distinct distributions of heterogeneous ice nucleating activity. Furthermore, the model successfully predicts the immersion freezing behavior of a low-concentration mixture of Snomax and illite mineral particles, a proxy for the biological material–dust (bio-dust) mixtures observed in atmospheric aerosols. It is shown that even at very low Snomax concentrations in the mixture, droplet freezing at higher temperatures is still determined solely by the second less active and more abundant distribution of heterogeneous ice nucleating activity of Snomax, while freezing at lower temperatures is determined solely by the heterogeneous ice nucleating activity of pure illite. This demonstrates that in this proxy system, biological ice nucleating particles do not compromise their ice nucleating activity upon mixing with dust and no new range of intermediary freezing temperatures associated with the mixture of ice nucleating particles of differing activities is produced. The study is the first to directly examine the freezing behavior of a mixture of Snomax and illite and presents the first multicomponent ice nucleation model experimentally evaluated using a wide range of ice nucleating particle concentration mixtures in droplets. 
    more » « less
  2. Abstract. Aerosols affect cirrus formation and evolution, yet quantificationof these effects remain difficult based on in situ observations due to thecomplexity of nucleation mechanisms and large variabilities in icemicrophysical properties. This work employed a method to distinguish fiveevolution phases of cirrus clouds based on in situ aircraft-basedobservations from seven U.S. National Science Foundation (NSF) and five NASAflight campaigns. Both homogeneous and heterogeneous nucleation werecaptured in the 1 Hz aircraft observations, inferred from the distributionsof relative humidity in the nucleation phase. Using linear regressions toquantify the correlations between cirrus microphysical properties andaerosol number concentrations, we found that ice water content (IWC) and icecrystal number concentration (Ni) show strong positive correlations withlarger aerosols (>500 nm) in the nucleation phase, indicatingstrong contributions of heterogeneous nucleation when ice crystals firststart to nucleate. For the later growth phase, IWC and Ni show similarpositive correlations with larger and smaller (i.e., >100 nm)aerosols, possibly due to fewer remaining ice-nucleating particles in thelater growth phase that allows more homogeneous nucleation to occur. Both200 m and 100 km observations were compared with the nudged simulations fromthe National Center for Atmospheric Research (NCAR) Community AtmosphereModel version 6 (CAM6). Simulated aerosol indirect effects are weaker thanthe observations for both larger and smaller aerosols for in situ cirrus,while the simulated aerosol indirect effects are closer to observations inconvective cirrus. The results also indicate that simulations overestimatehomogeneous freezing, underestimate heterogeneous nucleation andunderestimate the continuous formation and growth of ice crystals as cirrusclouds evolve. Observations show positive correlations of IWC, Ni and icecrystal mean diameter (Di) with respect to Na in both the Northern and SouthernHemisphere (NH and SH), while the simulations show negative correlations inthe SH. The observations also show higher increases of IWC and Ni in the SHunder the same increase of Na than those shown in the NH, indicating highersensitivity of cirrus microphysical properties to increases of Na in the SHthan the NH. The simulations underestimate IWC by a factor of 3–30 in theearly/later growth phase, indicating that the low bias of simulated IWC wasdue to insufficient continuous ice particle formation and growth. Sucha hypothesis is consistent with the model biases of lower frequencies of icesupersaturation and lower vertical velocity standard deviation in theearly/later growth phases. Overall, these findings show that aircraftobservations can capture both heterogeneous and homogeneous nucleation, andtheir contributions vary as cirrus clouds evolve. Future model developmentis also recommended to evaluate and improve the representation of watervapor and vertical velocity on the sub-grid scale to resolve theinsufficient ice particle formation and growth after the initial nucleationevent. 
    more » « less
  3. Heterogeneous ice nucleation in the atmosphere regulates cloud properties, such as phase (ice versus liquid) and lifetime. Aerosol particles of marine origin are relevant ice nucleating particle sources when marine aerosol layers are lifted over mountainous terrain and in higher latitude ocean boundary layers, distant from terrestrial aerosol sources. Among many particle compositions associated with ice nucleation by sea spray aerosols are highly saturated fatty acids. Previous studies have not demonstrated their ability to freeze dilute water droplets. This study investigates ice nucleation by monolayers at the surface of supercooled droplets and as crystalline particles at temperatures exceeding the threshold for homogeneous freezing. Results show the poor efficiency of long chain fatty acid (C16, C18) monolayers in templating freezing of pure water droplets and seawater subphase to temperatures of at least −30 °C, consistent with theory. This contrasts with freezing of fatty alcohols (C22 used here) at nearly 20 °C warmer. Evaporation of μL-sized droplets to promote structural compression of a C19 acid monolayer did not favor warmer ice formation of drops. Heterogeneous ice nucleation occurred for nL-sized droplets condensed on 5 to 100 μm crystalline particles of fatty acid (C12 to C20) at a range of temperatures below −28 °C. These experiments suggest that fatty acids nucleate ice at warmer than −36 °C only when the crystalline phase is present. Rough estimates of ice active site densities are consistent with those of marine aerosols, but require knowledge of the proportion of surface area comprised of fatty acids for application. 
    more » « less
  4. null (Ed.)
    Abstract. Glaciation in mixed-phase clouds predominantly occurs through theimmersion-freezing mode where ice-nucleating particles (INPs) immersedwithin supercooled droplets induce the nucleation of ice. Modelrepresentations of this process currently are a large source of uncertaintyin simulating cloud radiative properties, so to constrain these estimates,continuous-flow diffusion chamber (CFDC)-style INP devices are commonly usedto assess the immersion-freezing efficiencies of INPs. This study explored anew approach to operating such an ice chamber that provides maximumactivation of particles without droplet breakthrough and correction factorambiguity to obtain high-quality INP measurements in a manner thatpreviously had not been demonstrated to be possible. The conditioningsection of the chamber was maintained at −20 ∘C and water relative humidity (RHw) conditions of 113 % to maximize the droplet activation,and the droplets were supercooled with an independentlytemperature-controlled nucleation section at a steady cooling rate(0.5 ∘C min−1) to induce the freezing of droplets andevaporation of unfrozen droplets. The performance of the modified compactice chamber (MCIC) was evaluated using four INP species: K-feldspar,illite-NX, Argentinian soil dust, and airborne soil dusts from an arableregion that had shown ice nucleation over a wide span of supercooledtemperatures. Dry-dispersed and size-selected K-feldspar particles weregenerated in the laboratory. Illite-NX and soil dust particles were sampledduring the second phase of the Fifth International Ice Nucleation Workshop(FIN-02) campaign, and airborne soil dust particles were sampled from anambient aerosol inlet. The measured ice nucleation efficiencies of modelaerosols that had a surface active site density (ns) metric were higher but mostly agreed within 1 order of magnitude compared to results reported in the literature. 
    more » « less
  5. Abstract

    Cirrus ice crystals are produced heterogeneously on ice‐nucleating particles (INPs) and homogeneously in supercooled liquid solution droplets. They grow by uptake of water molecules from the ice‐supersaturated vapor. The precursor particles, characterized by disparate ice nucleation abilities and number concentrations, compete for available vapor during ice formation events. We investigate cirrus formation events systematically in different temperature and updraft regimes, and for different INP number concentrations and time‐independent nucleation efficiencies. We consider vertical air motion variability due to mesoscale gravity waves and effects of supersaturation‐dependent deposition coefficients for water molecules on ice surfaces. We analyze ice crystal properties to better understand the dynamics of competing nucleation processes. We study the reduction of ice crystal numbers produced by homogeneous freezing due to INPs in both, individual simulations assuming constant updraft speeds and in ensemble simulations based on a stochastic representation of vertical wind speed fluctuations. We simulate and interpret probability distributions of total nucleated ice crystal number concentrations, showing signatures of homogeneous and heterogeneous nucleation. At typically observed, mean updraft speeds (≈15 cm s−1) competing nucleation should occur frequently, even at rather low INP number concentrations (<10 L−1). INPs increase cirrus occurrence and may alter cirrus microphysical properties without entirely suppressing homogeneous freezing events. We suggest to improve ice growth models, especially for low cirrus temperatures (<220 K) and low ice supersaturation (<0.3).

     
    more » « less