skip to main content


Title: Transcriptome‐wide association studies: a view from Mendelian randomization
Background

Genome‐wide association studies (GWASs) have identified thousands of genetic variants that are associated with many complex traits. However, their biological mechanisms remain largely unknown. Transcriptome‐wide association studies (TWAS) have been recently proposed as an invaluable tool for investigating the potential gene regulatory mechanisms underlying variant‐trait associations. Specifically, TWAS integrate GWAS with expression mapping studies based on a common set of variants and aim to identify genes whose GReX is associated with the phenotype. Various methods have been developed for performing TWAS and/or similar integrative analysis. Each such method has a different modeling assumption and many were initially developed to answer different biological questions. Consequently, it is not straightforward to understand their modeling property from a theoretical perspective.

Results

We present a technical review on thirteen TWAS methods. Importantly, we show that these methods can all be viewed as two‐sample Mendelian randomization (MR) analysis, which has been widely applied in GWASs for examining the causal effects of exposure on outcome. Viewing different TWAS methods from an MR perspective provides us a unique angle for understanding their benefits and pitfalls. We systematically introduce the MR analysis framework, explain how features of the GWAS and expression data influence the adaptation of MR for TWAS, and re‐interpret the modeling assumptions made in different TWAS methods from an MR angle. We finally describe future directions for TWAS methodology development.

Conclusions

We hope that this review would serve as a useful reference for both methodologists who develop TWAS methods and practitioners who perform TWAS analysis.

 
more » « less
Award ID(s):
1712933
NSF-PAR ID:
10474502
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Quantitative Biology
Volume:
9
Issue:
2
ISSN:
2095-4689
Format(s):
Medium: X Size: p. 107-121
Size(s):
["p. 107-121"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Genome-wide association studies (GWASs) have identified and replicated many genetic variants that are associated with diseases and disease-related complex traits. However, the biological mechanisms underlying these identified associations remain largely elusive. Exploring the biological mechanisms underlying these associations requires identifying trait-relevant tissues and cell types, as genetic variants likely influence complex traits in a tissue- and cell type-specific manner. Recently, several statistical methods have been developed to integrate genomic data with GWASs for identifying trait-relevant tissues and cell types. These methods often rely on different genomic information and use different statistical models for trait-tissue relevance inference. Here, we present a comprehensive technical review to summarize ten existing methods for trait-tissue relevance inference. These methods make use of different genomic information that include functional annotation information, expression quantitative trait loci information, genetically regulated gene expression information, as well as gene co-expression network information. These methods also use different statistical models that range from linear mixed models to covariance network models. We hope that this review can serve as a useful reference both for methodologists who develop methods and for applied analysts who apply these methods for identifying trait relevant tissues and cell types.

     
    more » « less
  2. Background

    Genome‐wide association studies (GWAS) have succeeded in identifying tens of thousands of genetic variants associated with complex human traits during the past decade, however, they are still hampered by limited statistical power and difficulties in biological interpretation. With the recent progress in expression quantitative trait loci (eQTL) studies, transcriptome‐wide association studies (TWAS) provide a framework to test for gene‐trait associations by integrating information from GWAS and eQTL studies.

    Results

    In this review, we will introduce the general framework of TWAS, the relevant resources, and the computational tools. Extensions of the original TWAS methods will also be discussed. Furthermore, we will briefly introduce methods that are closely related to TWAS, including MR‐based methods and colocalization approaches. Connection and difference between these approaches will be discussed.

    Conclusion

    Finally, we will summarize strengths, limitations, and potential directions for TWAS.

     
    more » « less
  3. INTRODUCTION Genome-wide association studies (GWASs) have identified thousands of human genetic variants associated with diverse diseases and traits, and most of these variants map to noncoding loci with unknown target genes and function. Current approaches to understand which GWAS loci harbor causal variants and to map these noncoding regulators to target genes suffer from low throughput. With newer multiancestry GWASs from individuals of diverse ancestries, there is a pressing and growing need to scale experimental assays to connect GWAS variants with molecular mechanisms. Here, we combined biobank-scale GWASs, massively parallel CRISPR screens, and single-cell sequencing to discover target genes of noncoding variants for blood trait loci with systematic targeting and inhibition of noncoding GWAS loci with single-cell sequencing (STING-seq). RATIONALE Blood traits are highly polygenic, and GWASs have identified thousands of noncoding loci that map to candidate cis -regulatory elements (CREs). By combining CRE-silencing CRISPR perturbations and single-cell readouts, we targeted hundreds of GWAS loci in a single assay, revealing target genes in cis and in trans . For select CREs that regulate target genes, we performed direct variant insertion. Although silencing the CRE can identify the target gene, direct variant insertion can identify magnitude and direction of effect on gene expression for the GWAS variant. In select cases in which the target gene was a transcription factor or microRNA, we also investigated the gene-regulatory networks altered upon CRE perturbation and how these networks differ across blood cell types. RESULTS We inhibited candidate CREs from fine-mapped blood trait GWAS variants (from ~750,000 individual of diverse ancestries) in human erythroid progenitors. In total, we targeted 543 variants (254 loci) mapping to candidate CREs, generating multimodal single-cell data including transcriptome, direct CRISPR gRNA capture, and cell surface proteins. We identified target genes in cis (within 500 kb) for 134 CREs. In most cases, we found that the target gene was the closest gene and that specific enhancer-associated biochemical hallmarks (H3K27ac and accessible chromatin) are essential for CRE function. Using multiple perturbations at the same locus, we were able to distinguished between causal variants from noncausal variants in linkage disequilibrium. For a subset of validated CREs, we also inserted specific GWAS variants using base-editing STING-seq (beeSTING-seq) and quantified the effect size and direction of GWAS variants on gene expression. Given our transcriptome-wide data, we examined dosage effects in cis and trans in cases in which the cis target is a transcription factor or microRNA. We found that trans target genes are also enriched for GWAS loci, and identified gene clusters within trans gene networks with distinct biological functions and expression patterns in primary human blood cells. CONCLUSION In this work, we investigated noncoding GWAS variants at scale, identifying target genes in single cells. These methods can help to address the variant-to-function challenges that are a barrier for translation of GWAS findings (e.g., drug targets for diseases with a genetic basis) and greatly expand our ability to understand mechanisms underlying GWAS loci. Identifying causal variants and their target genes with STING-seq. Uncovering causal variants and their target genes or function are a major challenge for GWASs. STING-seq combines perturbation of noncoding loci with multimodal single-cell sequencing to profile hundreds of GWAS loci in parallel. This approach can identify target genes in cis and trans , measure dosage effects, and decipher gene-regulatory networks. 
    more » « less
  4. Abstract Background

    Neuropsychiatric disorders afflict a large portion of the global population and constitute a significant source of disability worldwide. Although Genome-wide Association Studies (GWAS) have identified many disorder-associated variants, the underlying regulatory mechanisms linking them to disorders remain elusive, especially those involving distant genomic elements. Expression quantitative trait loci (eQTLs) constitute a powerful means of providing this missing link. However, most eQTL studies in human brains have focused exclusively on cis-eQTLs, which link variants to nearby genes (i.e., those within 1 Mb of a variant). A complete understanding of disease etiology requires a clearer understanding of trans-regulatory mechanisms, which, in turn, entails a detailed analysis of the relationships between variants and expression changes in distant genes.

    Methods

    By leveraging large datasets from the PsychENCODE consortium, we conducted a genome-wide survey of trans-eQTLs in the human dorsolateral prefrontal cortex. We also performed colocalization and mediation analyses to identify mediators in trans-regulation and use trans-eQTLs to link GWAS loci to schizophrenia risk genes.

    Results

    We identified ~80,000 candidate trans-eQTLs (at FDR<0.25) that influence the expression of ~10K target genes (i.e., “trans-eGenes”). We found that many variants associated with these candidate trans-eQTLs overlap with known cis-eQTLs. Moreover, for >60% of these variants (by colocalization), the cis-eQTL’s target gene acts as a mediator for the trans-eQTL SNP's effect on the trans-eGene, highlighting examples of cis-mediation as essential for trans-regulation. Furthermore, many of these colocalized variants fall into a discernable pattern wherein cis-eQTL’s target is a transcription factor or RNA-binding protein, which, in turn, targets the gene associated with the candidate trans-eQTL. Finally, we show that trans-regulatory mechanisms provide valuable insights into psychiatric disorders: beyond what had been possible using only cis-eQTLs, we link an additional 23 GWAS loci and 90 risk genes (using colocalization between candidate trans-eQTLs and schizophrenia GWAS loci).

    Conclusions

    We demonstrate that the transcriptional architecture of the human brain is orchestrated by both cis- and trans-regulatory variants and found that trans-eQTLs provide insights into brain-disease biology.

     
    more » « less
  5. Abstract Motivation

    There is recent interest in using gene expression data to contextualize findings from traditional genome-wide association studies (GWAS). Conditioned on a tissue, expression quantitative trait loci (eQTLs) are genetic variants associated with gene expression, and eGenes are genes whose expression levels are associated with genetic variants. eQTLs and eGenes provide great supporting evidence for GWAS hits and important insights into the regulatory pathways involved in many diseases. When a significant variant or a candidate gene identified by GWAS is also an eQTL or eGene, there is strong evidence to further study this variant or gene. Multi-tissue gene expression datasets like the Gene Tissue Expression (GTEx) data are used to find eQTLs and eGenes. Unfortunately, these datasets often have small sample sizes in some tissues. For this reason, there have been many meta-analysis methods designed to combine gene expression data across many tissues to increase power for finding eQTLs and eGenes. However, these existing techniques are not scalable to datasets containing many tissues, like the GTEx data. Furthermore, these methods ignore a biological insight that the same variant may be associated with the same gene across similar tissues.

    Results

    We introduce a meta-analysis model that addresses these problems in existing methods. We focus on the problem of finding eGenes in gene expression data from many tissues, and show that our model is better than other types of meta-analyses.

    Availability and Implementation

    Source code is at https://github.com/datduong/RECOV.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less