skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Crowdsourced Doppler measurements of time standard stations demonstrating ionospheric variability
Abstract. Ionospheric variability produces measurable effects in Doppler shift of HF (high-frequency, 3–30 MHz) skywave signals. These effects are straightforward to measure with low-cost equipment and are conducive to citizen science campaigns. The low-cost Personal Space Weather Station (PSWS) network is a modular network of community-maintained, open-source receivers, which measure Doppler shift in the precise carrier signals of time standard stations. The primary goal of this paper is to explain the types of measurements this instrument can make and some of its use cases, demonstrating its role as the building block for a large-scale ionospheric and HF propagation measurement network which complements existing professional networks. Here, data from the PSWS network are presented for a period of time spanning late 2019 to early 2022. Software tools for the visualization and analysis of this living dataset are also discussed and provided. These tools are robust to data interruptions and to the addition, removal or modification of stations, allowing both short- and long-term visualization at higher density and faster cadence than other methods. These data may be used to supplement observations made with other geospace instruments in event-based analyses, e.g., traveling ionospheric disturbances and solar flares, and to assess the accuracy of the bottomside estimates of ionospheric models by comparing the oblique paths obtained by ionospheric ray tracers with those obtained by these receivers. The data are archived at https://doi.org/10.5281/zenodo.6622111 (Collins, 2022).  more » « less
Award ID(s):
2002278 2230345 2218996 2230346 1932997
PAR ID:
10474589
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
David Carlson
Publisher / Repository:
Copernicus Publications
Date Published:
Journal Name:
Earth System Science Data
Volume:
15
Issue:
3
ISSN:
1866-3516
Page Range / eLocation ID:
1403 to 1418
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Six specialized radio receivers were developed to measure the Doppler shift of amplitude modulation (AM) broadcast radio carrier signals due to ionospheric effects. Five were deployed approximately in a circle at a one-hop distance from an 810 kHz clear-channel AM transmitter in Schenectady, New York, and the sixth was located close to the transmitter, providing a reference recording. Clear-channel AM signals from New York City and Connecticut were also received. The experiment confirmed detection of traveling ionospheric disturbances (TIDs) and measurement of their horizontal phase velocities through monitoring variations in the Doppler shift of reflected AM signals imparted by vertical motions of the ionosphere. Comparison of 12 events with simultaneous global navigation satellite system (GNSS)-based TID measurements showed generally good agreement between the two techniques slightly more than half the time and substantial differences slightly less than half the time, with differences attributable to differing sensitivities of the techniques to wave altitude and characteristics within a complex wave environment. Detected TIDs had mostly southward phase velocities, and in four cases they were associated with auroral disturbances that could plausibly be their sources. A purely automated software technique for event detection and phase velocity measurement was developed and applied to 1 year of data, revealing that AM Doppler sounding is much more effective when using transmitter signals in the upper part of the AM band (above 1 MHz) and demonstrating that the AM Doppler technique has promise to scale to large numbers of receivers covering continent-wide spatial scales. 
    more » « less
  2. Abstract. Previous efforts have used pairs of closely spaced specialized receivers to measure Global Navigation Satellite System (GNSS) signals and to estimate ionospheric irregularity drifts. The relatively high cost associated with commercial GNSS-based ionospheric receivers has somewhat limited their deployment and the estimation of ionospheric drifts. The development of an alternative, low-cost, GNSS-based scintillation monitor (ScintPi) motivated us to investigate the possibility of using it to overcome this limitation. ScintPi monitors can observe signals from geostationary satellites, which can greatly simplify the estimation of the drifts. We present the results of an experiment to evaluate the use of ScintPi 3.0 to estimate ionospheric irregularity drifts. The experiment consisted of two ScintPi 3.0 deployed in Campina Grande, Brazil (7.213° S, 35.907° W; dip latitude ∼ 14° S). The monitors were spaced at a distance of 140 m in the magnetic east–west direction and targeted the estimation of the zonal drifts associated with scintillation-causing equatorial spread F (ESF) irregularities. Routine observations throughout an entire ESF season (September 2022–April 2023) were made as part of the experiment. We focused on the results of irregularity drifts derived from geostationary satellite signals. The results show that the local time variation in the estimated irregularity zonal drifts is in good agreement with previous measurements and with the expected behavior of the background zonal plasma drifts. Our results also reveal a seasonal trend in the irregularity zonal drifts. The trend follows the seasonal behavior of the zonal component of the thermospheric neutral winds as predicted by the Horizontal Wind Model (HMW14). This is explained by the fact that low-latitude ionospheric F-region plasma drifts are controlled, in great part, by Pedersen-conductivity-weighted flux-tube-integrated zonal neutral winds. The results confirm that ScintPi has the potential to contribute to new, cost-effective measurements of ionospheric irregularity drifts, in addition to scintillation and total electron content. Furthermore, the results indicate that these new ScintPi measurements can provide insight into ionosphere–thermosphere coupling. 
    more » « less
  3. Abstract Trans‐ionospheric high frequency (HF: 3–30 MHz) signals experience strong attenuation following a solar flare‐driven sudden ionospheric disturbance (SID). Solar flare‐driven HF absorption, referred to as short‐wave fadeout, is a well‐known impact of SIDs, but the initial Doppler frequency shift phenomena, also known as “Doppler flash” in the traveling radio wave is not well understood. This study seeks to advance our understanding of the initial impacts of solar flare‐driven SID using a physics‐based whole atmosphere model for a specific solar flare event. First, we demonstrate that the Doppler flash phenomenon observed by Super Dual Auroral Radar Network (SuperDARN) radars can be successfully reproduced using first‐principles based modeling. The output from the simulation is validated against SuperDARN line‐of‐sight Doppler velocity measurements. We then examine which region of the ionosphere, D, E, or F, makes the largest contribution to the Doppler flash. We also consider the relative contribution of change in refractive index through the ionospheric layers versus lowered reflection height. We find: (a) the model is able to reproduce radar observations with an root‐median‐squared‐error and a mean percentage error (δ) of 3.72 m/s and 0.67%, respectively; (b) the F‐region is the most significant contributor to the total Doppler flash (∼48%), 30% of which is contributed by the change in F‐region's refractive index, while the other ∼18% is due to change in ray reflection height. Our analysis shows lowering of the F‐region's ray reflection point is a secondary driver compared to the change in refractive index. 
    more » « less
  4. Abstract Super Dual Auroral Radar Network (SuperDARN) radars operate in a coordinated but monostatic configuration whereby high‐frequency (HF) signals scattered from ionospheric density irregularities or from the surface of the Earth return to the transmitting radar where Doppler parameters are then acquired. A bistatic arrangement has been developed for SuperDARN radars in which HF signals transmitted from one radar are received and analyzed by another radar that is separated by a large distance (>1,000 km). This new capability was developed and tested on radars located in Oregon and Kansas. Numerous 3‐day bistatic campaigns have been conducted over a period extending from September 2019 through March 2020. During these campaigns three distinct bistatic propagation modes have been identified including a direct mode in which signals are transmitted and received through the radar side lobes. Direct mode signals propagate along the great‐circle arc connecting the two bistatic radar sites, reflecting from the ionosphere at bothEregion andFregion altitudes. Two additional modes are observed in which HF signals transmitted from one radar scatter from either ionospheric density irregularities or from the surface of the Earth before propagating to the bistatic receiving radar. Ray tracing simulations performed for examples of each mode show good agreement with observations and confirm our understanding of these three bistatic propagation modes. Bistatic campaigns continue to be scheduled in order to improve technical aspects of this new capability, to further explore the physical processes involved in the propagation and scattering of HF bistatic signals and to expand the coverage of ionospheric effects that is possible with SuperDARN. 
    more » « less
  5. Abstract Continuous wave signals from a network of high frequency (HF) beacons in Peru and other instruments are used to reconstruct the regional ionospheric electron number density in the volume surrounding the network. The continuous wave (CW) HF signals employ binary phase codes with pseudorandom noise (PRN) encoding, and the observables include propagation time or pseudorange, Doppler shift or beat carrier phase, and amplitude. A forward model based on geometric optics in an inhomogeneous, anisotropic, lossy plasma is used to relate plasma number density to the observables. Plasma number density is parametrized in terms of a modified Chapman profile in the vertical and biquintic B‐splines in the horizontal. Sensitivity analysis is required both to model the ray amplitudes and to solve the two‐point boundary problem for each ray. Sensitivity analysis is performed here using reverse‐mode automatic differentiation. In particular, we use an LLVM compiler (Clang), the corresponding OpenMP library, and the Enzyme Automatic Differentiation Framework plugin to compute the sensitivity (gradients) of ray endpoints with respect to their initial bearings. The resulting algorithm exhibits no performance penalty compared to variational sensitivity analysis and is far simpler to implement. 
    more » « less