skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seeing the light: metabolic activity of restored and unrestored streams in the Baltimore, MD region.
The continually increasing global population residing in urban landscapes impacts numerous ecosystem functions and services provided by urban streams. Urban stream restoration is often employed to offset these impacts and conserve or enhance the various functions and services these streams provide. Despite the assumption that ‘if you build it, [the function] will come’, current understanding of the effects of urban stream restoration on stream ecosystem functions are based on short term studies which may not capture variation in restoration effectiveness over time. We quantified the impact of stream restoration on nutrient and energy dynamics of urban streams by studying 10 urban stream reaches (five restored, five unrestored) in the Baltimore, Maryland, USA, region over a two-year period. We measured gross primary production (GPP) and ecosystem respiration (ER) at the whole-stream scale continuously throughout the study and nitrate (NO3-N) spiraling rates seasonally (spring, summer, autumn) across all reaches. There was no significant restoration effect on NO3-N spiraling across reaches. However, there was a significant canopy cover effect on NO3-N spiraling, and directly comparing paired sets of unrestored-restored reaches showed that restoration does affect NO3-N spiraling after accounting for other environmental variation. Furthermore, there was a change in GPP:ER seasonality, with restored and open-canopied reaches exhibiting higher GPP:ER during summer. The restoration effect, though, appears contingent upon altered canopy cover, which is likely to be a temporary effect of restoration and is a driver of multiple ecosystem services, e.g., habitat, riparian nutrient processing. Our results suggest that decision-making about stream restoration, including evaluations of nutrient benefits, clearly needs to consider spatial and temporal dynamics of canopy cover and tradeoffs among multiple ecosystem services. Here we provide model estimates for GPP, ER, and net ecosystem productivity (NEP) from from 10 sites throughout the greater Baltimore area. These estimates are included in the manuscript “Seeing the light: Urban stream restoration affects stream metabolism and nitrate uptake via changes in canopy cover” by A.J. Reisinger, T.R. Doody, P.M. Groffman, S.S. Kaushal, and Emma J. Rosi, which is currently accepted for publication in Ecological applications.  more » « less
Award ID(s):
1855277
PAR ID:
10474631
Author(s) / Creator(s):
; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The continually increasing global population residing in urban landscapes impacts numerous ecosystem functions and services provided by urban streams. Urban stream restoration is often employed to offset these impacts and conserve or enhance the various functions and services these streams provide. Despite the assumption that ‘if you build it, [the function] will come’, current understanding of the effects of urban stream restoration on stream ecosystem functions are based on short term studies which may not capture variation in restoration effectiveness over time. We quantified the impact of stream restoration on nutrient and energy dynamics of urban streams by studying 10 urban stream reaches (five restored, five unrestored) in the Baltimore, Maryland, USA, region over a two-year period. We measured gross primary production (GPP) and ecosystem respiration (ER) at the whole-stream scale continuously throughout the study and nitrate (NO3-N) spiraling rates seasonally (spring, summer, autumn) across all reaches. There was no significant restoration effect on NO3-N spiraling across reaches. However, there was a significant canopy cover effect on NO3-N spiraling, and directly comparing paired sets of unrestored-restored reaches showed that restoration does affect NO3-N spiraling after accounting for other environmental variation. Furthermore, there was a change in GPP:ER seasonality, with restored and open-canopied reaches exhibiting higher GPP:ER during summer. The restoration effect, though, appears contingent upon altered canopy cover, which is likely to be a temporary effect of restoration and is a driver of multiple ecosystem services, e.g., habitat, riparian nutrient processing. Our results suggest that decision-making about stream restoration, including evaluations of nutrient benefits, clearly needs to consider spatial and temporal dynamics of canopy cover and tradeoffs among multiple ecosystem services. Here we provide site descriptions and nitrate spiraling data from nutrient releases performed at 10 sites throughout the greater Baltimore area. These estimates are included in the manuscript “Seeing the light: Urban stream restoration affects stream metabolism and nitrate uptake via changes in canopy cover” by A.J. Reisinger, T.R. Doody, P.M. Groffman, S.S. Kaushal, and Emma J. Rosi, which is currently accepted for publication in Ecological applications. 
    more » « less
  2. The continually increasing global population residing in urban landscapes impacts numerous ecosystem functions and services provided by urban streams. Urban stream restoration is often employed to offset these impacts and conserve or enhance the various functions and services these streams provide. Despite the assumption that ‘if you build it, [the function] will come’, current understanding of the effects of urban stream restoration on stream ecosystem functions are based on short term studies which may not capture variation in restoration effectiveness over time. We quantified the impact of stream restoration on nutrient and energy dynamics of urban streams by studying 10 urban stream reaches (five restored, five unrestored) in the Baltimore, Maryland, USA, region over a two-year period. We measured gross primary production (GPP) and ecosystem respiration (ER) at the whole-stream scale continuously throughout the study and nitrate (NO3-N) spiraling rates seasonally (spring, summer, autumn) across all reaches. There was no significant restoration effect on NO3-N spiraling across reaches. However, there was a significant canopy cover effect on NO3-N spiraling, and directly comparing paired sets of unrestored-restored reaches showed that restoration does affect NO3-N spiraling after accounting for other environmental variation. Furthermore, there was a change in GPP:ER seasonality, with restored and open-canopied reaches exhibiting higher GPP:ER during summer. The restoration effect, though, appears contingent upon altered canopy cover, which is likely to be a temporary effect of restoration and is a driver of multiple ecosystem services, e.g., habitat, riparian nutrient processing. Our results suggest that decision-making about stream restoration, including evaluations of nutrient benefits, clearly needs to consider spatial and temporal dynamics of canopy cover and tradeoffs among multiple ecosystem services. Here we provide the raw dissolved oxygen, temperature, light, depth, and discharge data used to estimate whole-stream metabolism from 10 sites throughout the greater Baltimore area. These estimates are included in the manuscript “Seeing the light: Urban stream restoration affects stream metabolism and nitrate uptake via changes in canopy cover” by A.J. Reisinger, T.R. Doody, P.M. Groffman, S.S. Kaushal, and Emma J. Rosi, which is currently accepted for publication in Ecological applications. 
    more » « less
  3. Abstract Urbanization increases stormwater runoff into streams, resulting in channel erosion, and increases in sediment and nutrient delivery to receiving water bodies. Stream restoration is widely used as a Best Management Practice to stabilize banks and reduce sediment and nutrient loads. While most instream nutrient retention measurements are often limited to low flow conditions, most of the nutrient load is mobilized at high stream flows in urban settings. We, therefore, use a process‐based stream ecosystem model in conjunction with measurements at low flows and focus on estimation of stream nitrogen retention over the full streamflow distribution. The model provides a theoretical framework to evaluate the geomorphic, hydrologic, and ecological factors that are manipulated by stream restoration, and drive nitrogen retention. We set a model for a pool‐riffle sequence restored stream (190 m) in Baltimore County, Maryland and calibrated the model to thein situmeasured primary production (Nash–Sutcliffe model efficiency coefficient [NSE] NSE = 0.89), respiration (NSE = 0.74), and nitrate uptake lengths (R2 = 0.88). At the daily scale, simulations showed low nitrogen retention during high flows due to high transport rates, mobilization of stored hyporheic nitrogen, and scouring of periphyton biomass. This result underscores the need to reduce contributing watershed runoff flashiness to promote aquatic nutrient cycling and retention. At monthly and yearly time scale, model predicted a higher percent reduction in summer than in winter and estimated 5.7%–9.5% of annual nitrate reductions. While the model was tested in a pool‐riffle sequence restoration design, the approach can be adapted to evaluate a range of channel restoration design characteristics, and the effects of upland watershed restoration to mitigate stormwater loading through both restored and unrestored streams. 
    more » « less
  4. Abstract Stream restoration is widely used to mitigate the degradation of urban stream channels, protect infrastructure, and reduce sediment and nutrient loadings to receiving waterbodies. Stabilizing and revegetating riparian areas can also provide recreational opportunities and amenities, and improve quality of life for nearby residents. In this project, we developed indices of an environmental benefit (potential nitrate load reduction, a priority in the Chesapeake Bay watershed) and economic benefit (household willingness to pay, WTP) of stream restoration for all low order stream reaches in three main watersheds in the Baltimore metro region. We found spatial asynchrony of these benefits such that their spatial patterns were negatively correlated. Stream restoration in denser urban, less wealthy neighborhoods have high WTP, but low potential nitrate load reduction, while suburban and exurban, wealthy neighborhoods have the reverse trend. The spatial asynchrony raises challenges for decision makers to balance economic efficiency, social equity, and specific environmental goals of stream restoration programs. 
    more » « less
  5. Abstract Determining how streams develop naturally, particularly the ecological role of newly developed riparian canopy cover, is essential to understanding the factors that structure new stream communities and provides valuable information for restoring highly disturbed ecosystems. However, attempts to understand primary succession in riverine ecosystems have been hindered by a lack of data owing to the infrequent formation of new rivers on the landscape. In the present study, we used five streams formed following the 1980 eruption of Mount St. Helens (WA, USA) to examine the influence of canopy cover development on algal and benthic macroinvertebrate assemblages, biomass, and organic matter processing. Newly established closed canopy reaches had less available light, but no significant differences in algal biomass or macroinvertebrate assemblages compared to open canopy reaches. Instead, algal and macroinvertebrate communities were structured mainly by hydrologic differences among watersheds. In contrast, organic matter processing rates were sensitive to canopy cover development, and rates were faster under closed canopies, especially in late summer or after terrestrial preconditioning. After 40 years of stream and riparian primary successional development, canopy cover strongly influences ecosystem function, but aquatic organism assembly was more influenced by physio-chemical and hydrologic variation. Our findings provide insight into the development of in-stream assemblages and ecosystem functions, which is also relevant to efforts to address major disturbances to stream channels, such as volcanic eruptions, floods, forest fires, and clear-cut logging. 
    more » « less