skip to main content


Title: Mosquito Ovitrap Data from Baltimore City and County (2011-2016)
Mosquitoes are an important component of insect biodiversity across all ecosystems. As invertebrates, they are sensitive to abiotic conditions during both aquatic juvenile and terrestrial adult stages. The data here were collected to identify how mosquito species composition, phenology, and peak population abundances are influenced by changes in abiotic and biotic conditions along an urbanization gradient from residential Baltimore City to forested Baltimore County. Many of the sample sites were aligned with the LTER's stream sampling along the Gwynns Falls, with additional sites located in community gardens in residential neighborhoods near Watershed 263.  more » « less
Award ID(s):
1855277
NSF-PAR ID:
10474650
Author(s) / Creator(s):
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the Baltimore urban long-term ecological research (LTER) project, (Baltimore Ecosystem Study, BES) we use the watershed approach to evaluate integrated ecosystem function. The LTER research is centered on the Gwynns Falls watershed, a 17,150 ha catchment that traverses a gradient from the urban core of Baltimore, through older urban residential (1900 - 1950) and suburban (1950- 1980) zones, rapidly suburbanizing areas and a rural/suburban fringe. Our long-term sampling network includes four longitudinal sampling sites along the Gwynns Falls as well as several small (40 - 100 ha) watersheds located within or near to the Gwynns Falls. The longitudinal sites provide data on water and nutrient fluxes in the different land use zones of the watershed (rural/suburban, rapidly suburbanizing, old suburban, urban core) and the small watersheds provide more focused data on specific land use areas (forest, agriculture, rural/suburban, urban). Each of the gaging sites is continuously monitored for discharge and is sampled weekly for chemistry. Additional chemical sampling is carried out in a supplemental set of sites to provide a greater range of land use. Weekly analyses includes nitrate, phosphate, total nitrogen, total phosphorus, chloride and sulfate, total suspended solids, turbidity, fecal coliforms, temperature, dissolved oxygen and pH. Cations, dissolved organic carbon and nitrogen and metals are measured on selected samples. This dataset presents stream chemistry from the Upper Gwynns Falls tributaries. From April 1999 to August 2000 Johns Hopkins University graduate student Mark Colosimo sampled a group of sites in the Upper Gwynns Falls (Red Run, Horsehead Branch, Scotts Level Branch, Holly Branch). There were two sites in the Red Run drainage. This watershed drains approximately 19 km2 and has been rapidly suburbanizing since the early 1990s. Percent impervious surface was approximately 10% as of 2002. Sampling station Red Run 1 (RR1) was approximately 35 m upstream of the crossing of Painters Mill Bridge Road, and 350 m upstream of the confluence with the Gwynns Falls. Sampling station Red Run 2 (RR2) was farther upstream, between the Pleasant Hill and Dolfield road crossings. There were two sites along Scotts Level Branch, an older suburban watershed which was approximately 25% impervious surface in 1970. Site SL1 drains approximately 11 km2 and is located at the outlet of the sub-watershed, just above the confluence with Gwynns Falls. Site SL2 is at the McDonogh Rd. bridge crossing. The Horsehead Branch (HH) sampling site was located at the McDonogh Road crossing. It drains approximately 5 km2 that has undergone rapid urbanization since the mid 1980s. As of 1997 percent impervious surface was approximately 12%. The Holly Bank (HB) sampling site was located just upstream of Gwynnbrook Ave. Seventy percent of land in this drainage is classified residential. The Gwynns Falls at McDonogh (GF5) site was located at the McDonogh school / McDonogh road crossing of the Gwynns Falls and samples a drainage area of approximately 51 km2, with approximately 20% impervious surface. 
    more » « less
  2. In the Baltimore urban long-term ecological research (LTER) project, (Baltimore Ecosystem Study, BES) we use the watershed approach to evaluate integrated ecosystem function. The LTER research is centered on the Gwynns Falls watershed, a 17,150 ha catchment that traverses a gradient from the urban core of Baltimore, through older urban residential (1900 - 1950) and suburban (1950- 1980) zones, rapidly suburbanizing areas and a rural/suburban fringe. Our long-term sampling network includes four longitudinal sampling sites along the Gwynns Falls as well as several small (40 - 100 ha) watersheds located within or near to the Gwynns Falls. The longitudinal sites provide data on water and nutrient fluxes in the different land use zones of the watershed (rural/suburban, rapidly suburbanizing, old suburban, urban core) and the small watersheds provide more focused data on specific land use areas (forest, agriculture, rural/suburban, urban). Each of the gaging sites is continuously monitored for discharge and is sampled weekly for chemistry. Additional chemical sampling is carried out in a supplemental set of sites to provide a greater range of land use. Weekly analyses includes nitrate, phosphate, total nitrogen, total phosphorus, chloride and sulfate, turbidity, fecal coliforms, temperature, dissolved oxygen and pH. Cations, dissolved organic carbon and nitrogen and metals are measured on selected samples. This dataset presents stream chemistry from the Cub Hill stream sites. The Cub Hill site is 14 km from the Baltimore city center (39 degrees 24'30.20N, 76 degrees 30'50.62W) and is the location of the first permanent urban carbon flux tower in an urban/suburban environment, established in 2001 by the U.S. Forest Service. Three stream monitoring sites were established in the residential area in the footprint of the tower; Jennifer Branch at North Wind Rd. (JBNW) and two headwater tributaries to Jennifer Branch: Harford Hills (JBHH) and Ontario (JBON). These sites were sampled weekly from August 2003 through June 2010. 
    more » « less
  3. Abstract: One-meter soil cores were taken to evaluate soil texture, bulk density, carbon and nitrogen pools, microbial biomass carbon and nitrogen content, microbial respiration, potential net nitrogen mineralization, potential net nitrification and inorganic nitrogen pools in 32 residential home lawns that differed by previous land use and age, but had similar soil types. These were compared to soils from 8 forested reference sites. Purpose: Soil cores were obtained from residential and forest sites in the Baltimore, MD USA metropolitan area. The residential sites were mostly within the Gwynns Falls Watershed (-76.012008W, -77.314183E, 39.724847N, 38.708367S and approximately 17 km2) Lawns on residential sites were dominated by a variety of cool season turfgrasses. Forest soil cores were taken from permanent forest plots of the Baltimore Ecosystem Study (BES) LTER (Groffman et al. 2006). These remnant forests are over 100 years old with soils that were comparable in type and texture to those underlying the residential study sites. Soils from all sites were from the Manor series (coarse-loamy, micaceous, mesic Typic Dystrudepts), which are well-drained upland soils with loamy textures and bedrock at 5 to 10 feet below the soil surface. To aid the site selection process we used neighborhoods in the Baltimore City metropolitan area that have been mapped using HERCULES, a high resolution land cover classification system designed to assist in the study of human-ecological systems (Cadenasso et al. 2007). Using HERCULES and additional data sources, we identified residential sites that were similar except for single factors that we hypothesized to be important predictors of ecosystem dynamics. These factors included land use history (agriculture and forest, n = 10 and n = 22), housing density (low and medium/high, n = 9 and n = 23), and housing age (4 to 58 yrs old, n = 32). Housing age was acquired from the Maryland Property View database. Prior land use was determined based on land use change maps developed by integrating aerial photos from 1938, 1957, 1971, and 1999 into a geographic information system. Once a list of residential parcels meeting the predefined criteria were identified, we sent mailings to property owners chosen at random from each of the factor groups with the goal of recruiting 40 property owners for a 3 year study (of which this work is a part). We had recruited 32 property owners at the time that soil cores were obtained. Data have been published in Raciti et al. (2011a, 2011b) References Cadenasso, M. L., S. T. A. Pickett, and K. Schwarz. 2007. Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Frontiers in Ecology and the Environment 5:80-88. Groffman, P. M., R. V. Pouyat, M. L. Cadenasso, W. C. Zipperer, K. Szlavecz, I. D. Yesilonis, L. E. Band, and G. S. Brush. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management 236:177-192. Raciti, S. R., P. M. Groffman, J. C. Jenkins, R. V. Pouyat, and T. J. Fahey. 2011a. Controls on nitrate production and availability in residential soils. Ecological Applications:In press. Raciti, S. R., P. M. Groffman, J. C. Jenkins, R. V. Pouyat, T. J. Fahey, M. L. Cadenasso, and S. T. A. Pickett. 2011b. Accumulation of carbon and nitrogen in residential soils with different land use histories. Ecosystems 14:287-297. 
    more » « less
  4. In the Baltimore urban long-term ecological research (LTER) project, (Baltimore Ecosystem Study, BES) we use the watershed approach to evaluate integrated ecosystem function. The LTER research is centered on the Gwynns Falls watershed, a 17,150 ha catchment that traverses a gradient from the urban core of Baltimore, through older urban residential (1900 - 1950) and suburban (1950- 1980) zones, rapidly suburbanizing areas and a rural/suburban fringe. Our long-term sampling network includes four longitudinal sampling sites along the Gwynns Falls as well as several small (40 - 100 ha) watersheds located within or near to the Gwynns Falls. The longitudinal sites provide data on water and nutrient fluxes in the different land use zones of the watershed (rural/suburban, rapidly suburbanizing, old suburban, urban core) and the small watersheds provide more focused data on specific land use areas (forest, agriculture, rural/suburban, urban). Each of the gaging sites is continuously monitored for discharge and is sampled weekly for chemistry. Additional chemical sampling is carried out in a supplemental set of sites to provide a greater range of land use. Weekly analyses includes nitrate, phosphate, total nitrogen, total phosphorus, chloride and sulfate, turbidity, fecal coliforms, temperature, dissolved oxygen and pH. Cations, dissolved organic carbon and nitrogen and metals are measured on selected samples. This dataset presents stream chemistry from the Watershed 263 subwatersheds. Watershed 263 is a 364 ha urban storm drain watershed (or sewershed), with 30,000 residents with mixed industrial, institutional, and residential land uses. In March 2004, we established monitoring sites in two sub-watersheds within W263 (Baltimore Street and Lanvale Street). Both are approximately 17 ha with 50% impervious surface and 4% vegetation cover. 
    more » « less
  5. The aim of this research was to examine how topography and homeowner fertilizer practices affected soil and hydrologic properties of residential lawns to determine if there are locations within lawns that have the potential to act as hotspots of nitrogen transport during rain events. This data set contains measurements of saturated infiltration rates, sorptivity, soil moisture, soil organic matter, pH, soil nitrate, soil ammonium, denitrification potentials and limiting factors, and nitrogen mineralization rates from fertilized and unfertilized residential and institutional lawns. Study lawns were located at homes of people who agreed to volunteer their lawn for the study from a door knocking campaign. Four sampling houses were located in an exurban neighborhood in Baisman Run. Five sampling houses were located in a suburban neighborhood in Dead Run. Two sampling locations on institutional lawns were located at University of Maryland Baltimore County. At the exurban study houses and institutional lawns sites,we identified one hillslope to conduct sampling on. At the Dead Run houses we identified one hillslope on the front yard and one in the backyard as there were distinct locations that were not present in the exurban neighborhood. In total we sampled on 16 hillslopes. At each hillslope, we identified the top, toe and swale locations. At each hillslope location, we selected three sampling locations along a transect (maximum 10 meters in length; total of 144 sampling locations). At each sampling location we ran a Cornell Sprinkle Infiltrometer to measure sorptivity and saturated infiltration rates. Volumetric water content was measured before and after infiltrometer runs with a Field Scout TDR 300 with 7.5 cm rods. In addition, at each sampling location we took two soil cores to 10 cm depth, and combined and homogenized the two cores for that sampling location for a total of 144 soil samples. Soil cores were stored on ice in the field, and then stored at 4°C in the lab until processed for variables mentioned above. Sampling for soil cores was conducted in September 2017 with one house collected on 11/1/2017 due to changes in homeowner volunteers. Cornell Sprinkle Infiltrometer measurements were taken in October 2017 with one exception for house DR3. The front yard was conducted on 1/30/2018 and the back yard was completed on 2/27/2018 due to scheduling conflicts and weather interference during October and proceeding months. 
    more » « less