- Award ID(s):
- 1855277
- NSF-PAR ID:
- 10474682
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Land-use and land cover classifications are typically created using automated methods to analyze modern, spatially explicit color aerial imagery. However, creating classifications from black and white historical aerial imagery presents a number of challenges that require a combination of more traditional, manual techniques and approaches. A georectified mosaic of 113 aerial images was digitized in ArcGIS to create a land-use/land cover classification. The analyzed area covered 700 km2 (270 mi2) including all of Baltimore City, and a portion of Baltimore County immediately surrounding the city. A combination of 8 land-use and land cover classes were used: Agriculture, Barren, Built (Other), Forest, Grass/Shrubland, Industrial, Residential, and Water. This geospatial data set captures an ecologically and socially important moment in the post-war history of the city. It can be used to examine relationships between property ownership and forest patch dynamics across time. These insights may help inform future environmental planning, conservation, management, and stewardship goals for Baltimore City forest patches, and other cities throughout the region.more » « less
-
Landscape analyses are typically done using spatially explicit color aerial imagery. However, working with non-spatial black and white historical aerial photographs presents several challenges that require a combination of techniques and approaches. We analyzed 93 aerial images covering 544 km2 (210 mi2) including all of Baltimore City, and an area immediately adjacent to the city known at the time as the Metropolitan District of Baltimore County. The images were taken from a biplane between October 1926 and February 1927. High-resolution scans were georeferenced and georectified against modern satellite imagery of the area and then combined to create a single raster mosaic. This process converted the images from a disparate set of photographs into a spatially explicit GIS data set that can be used to observe changes in land patches over time—and ultimately integrated with other long-term social, economic, and ecological data.more » « less
-
Landscape analyses are typically done using spatially explicit color aerial imagery. However, working with non-spatial black and white historical aerial photographs presents several challenges that require a combination of techniques and approaches. We analyzed 113 aerial images covering approx. 700 km2 (270 mi2) including all of Baltimore City, and a portion of Baltimore County surrounding the City. The images were taken between August 23rd 1952 and February 14th 1953. High-resolution scans were georeferenced and georectified against modern satellite imagery of the area and then combined to create a single raster mosaic. This process converted the images from a disparate set of photographs into a spatially explicit GIS data set that can be used to observe changes in land patches over time—and ultimately integrated with other long-term social, economic, and ecological data.more » « less
-
Abstract Land-use change is highly dynamic globally and there is great uncertainty about the effects of land-use legacies on contemporary environmental performance. We used a chronosequence of urban grasslands (lawns) that were converted from agricultural and forested lands from 10 to over 130 years prior to determine if land-use legacy influences components of soil biodiversity and composition over time. We used historical aerial imagery to identify sites in Baltimore County, MD (USA) with agricultural versus forest land-use history. Soil samples were taken from these sites as well as from existing well-studied agricultural and forest sites used as historical references by the National Science Foundation Long-Term Ecological Research Baltimore Ecosystem Study program. We found that the microbiomes in lawns of agricultural origin were similar to those in agricultural reference sites, which suggests that the ecological parameters on lawns and reference agricultural systems are similar in how they influence soil microbial community dynamics. In contrast, lawns that were previously forest showed distinct shifts in soil bacterial composition upon recent conversion but reverted back in composition similar to forest soils as the lawns aged over decades. Soil fungal communities shifted after forested land was converted to lawns, but unlike bacterial communities, did not revert in composition over time. Our results show that components of bacterial biodiversity and composition are resistant to change in previously forested lawns despite urbanization processes. Therefore land-use legacy, depending on the prior use, is an important factor to consider when examining urban ecological homogenization.
-
Abstract A multitude of disturbance agents, such as wildfires, land use, and climate‐driven expansion of woody shrubs, is transforming the distribution of plant functional types across Arctic–Boreal ecosystems, which has significant implications for interactions and feedbacks between terrestrial ecosystems and climate in the northern high‐latitude. However, because the spatial resolution of existing land cover datasets is too coarse, large‐scale land cover changes in the Arctic–Boreal region (ABR) have been poorly characterized. Here, we use 31 years (1984–2014) of moderate spatial resolution (30 m) satellite imagery over a region spanning 4.7 × 106 km2in Alaska and northwestern Canada to characterize regional‐scale ABR land cover changes. We find that 13.6 ± 1.3% of the domain has changed, primarily via two major modes of transformation: (a) simultaneous disturbance‐driven decreases in Evergreen Forest area (−14.7 ± 3.0% relative to 1984) and increases in Deciduous Forest area (+14.8 ± 5.2%) in the Boreal biome; and (b) climate‐driven expansion of Herbaceous and Shrub vegetation (+7.4 ± 2.0%) in the Arctic biome. By using time series of 30 m imagery, we characterize dynamics in forest and shrub cover occurring at relatively short spatial scales (hundreds of meters) due to fires, harvest, and climate‐induced growth that are not observable in coarse spatial resolution (e.g., 500 m or greater pixel size) imagery. Wildfires caused most of Evergreen Forest Loss and Evergreen Forest Gain and substantial areas of Deciduous Forest Gain. Extensive shifts in the distribution of plant functional types at multiple spatial scales are consistent with observations of increased atmospheric CO2seasonality and ecosystem productivity at northern high‐latitudes and signal continental‐scale shifts in the structure and function of northern high‐latitude ecosystems in response to climate change.