Nutrient limitation is widespread in terrestrial ecosystems. Accordingly, representations of nitrogen (N) limitation in land models typically dampen rates of terrestrial carbon (C) accrual, compared with C‐only simulations. These previous findings, however, rely on soil biogeochemical models that implicitly represent microbial activity and physiology. Here we present results from a biogeochemical model testbed that allows us to investigate how an explicit versus implicit representation of soil microbial activity, as represented in the MIcrobial‐MIneral Carbon Stabilization (MIMICS) and Carnegie‐Ames‐Stanford Approach (CASA) soil biogeochemical models, respectively, influence plant productivity, and terrestrial C and N fluxes at initialization and over the historical period. When forced with common boundary conditions, larger soil C pools simulated by the MIMICS model reflect longer inferred soil organic matter (SOM) turnover times than those simulated by CASA. At steady state, terrestrial ecosystems experience greater N limitation when using the MIMICS‐CN model, which also increases the inferred SOM turnover time. Over the historical period, however, warming‐induced acceleration of SOM decomposition over high latitude ecosystems increases rates of N mineralization in MIMICS‐CN. This reduces N limitation and results in faster rates of vegetation C accrual. Moreover, as SOM stoichiometry is an emergent property of MIMICS‐CN, we highlight opportunities to deepen understanding of sources of persistent SOM and explore its potential sensitivity to environmental change. Our findings underscore the need to improve understanding and representation of plant and microbial resource allocation and competition in land models that represent coupled biogeochemical cycles under global change scenarios.
more »
« less
Drivers of legacy soil organic matter decomposition after fire in boreal forests
Abstract Boreal forests harbor as much carbon (C) as the atmosphere and significant amounts of organic nitrogen (N), the nutrient most likely to limit plant productivity in high‐latitude ecosystems. In the boreal biome, the primary disturbance is wildfire, which consumes plant biomass and soil material, emits greenhouse gasses, and influences long‐term C and N cycling. Climate warming and drying is increasing wildfire severity and frequency and is combusting more soil organic matter (SOM). Combustion of surface SOM exposes deeper older layers of accumulated soil material that previously escaped combustion during past fires, here termed legacy SOM. Postfire SOM decomposition and nutrient availability are determined by these layers, but the drivers of legacy SOM decomposition are unknown. We collected soils from plots after the largest fire year on record in the Northwest Territories, Canada, in 2014. We used radiocarbon dating to measure Δ14C (soil age index), soil extractions to quantify N pools and microbial biomass, and a 90‐day laboratory incubation to measure the potential rate of element mineralization and understand patterns and drivers of legacy SOM C decomposition and N availability. We discovered that bulk soil C age predicted C decomposition, where cumulatively, older soil (approximately −450.0‰) produced 230% less C during the incubation than younger soil (~0.0‰). Soil age also predicted C turnover times, with old soil turnover 10 times slower than young soil. We found respired C was younger than bulk soil C, indicating most C enters and leaves relatively quickly, while the older portion remains a stable C sink. Soil age and other indices were unrelated to N availability, but microbial biomass influenced N availability, with more microbial biomass immobilizing soil N pools. Our results stress the importance of legacy SOM as a stable C sink and highlight that soil age drives the pace and magnitude of soil C contributions to the atmosphere between wildfires.
more »
« less
- PAR ID:
- 10474742
- Publisher / Repository:
- Ecological Society of America
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 14
- Issue:
- 11
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background: The increasing size, severity, and frequency of wildfires is one of the most rapid ways climate warming could alter the structure and function of high-latitude ecosystems. Historically, boreal forests in western North America had fire return intervals (FRI) of 70-130 years, but shortened FRIs are becoming increasingly common under extreme weather conditions. Here, we quantified pre-fire and post-fire C pools and C losses and assessed post-fire seedling regeneration in long (>70 years), intermediate (30 -70 years), and short (<30 years) FRIs, and triple (three fires in <70 years) burns. As boreal forests store a significant portion of the global terrestrial carbon (C) pool, understanding the impacts of shortened FRIs on these ecosystems is critical for predicting the global C balance and feedbacks to climate. Results: Using a spatially extensive dataset of 555 plots from 31 separate fire scars in Interior Alaska, our study demonstrates that shortened FRIs decrease the C storage capacity of boreal forests through loss of legacy C and regeneration failure. Total wildfire C emissions were similar among FRI classes, ranging from 2.5 to 3.5 kilograms Carbon per square meter (kg C m-2). However, shortened FRIs lost proportionally more of their pre-fire C pools, resulting in substantially lower post-fire C pools than long FRIs. Shortened FRIs also resulted in the combustion of legacy C, defined as C that escaped combustion in one or more previous fires. We found that post-fire successional trajectories were impacted by FRI, with ~ 65% of short FRIs and triple burns experiencing regeneration failure. Conclusions: Our study highlights the structural and functional vulnerability of boreal forests to increasing fire frequency. Shortened FRIs and the combustion of legacy C can shift boreal ecosystems from a net C sink or neutral to a net C source to the atmosphere and increase the risk of transitions to non-forested states. These changes have profound implications for the boreal C-climate feedback and could accelerate climate warming. Our findings underscore the need for adaptive management strategies that prioritize the structural and functional resilience of boreal forest ecosystems to expected increases in fire frequency.more » « less
-
Abstract BackgroundThe increasing size, severity, and frequency of wildfires is one of the most rapid ways climate warming could alter the structure and function of high-latitude ecosystems. Historically, boreal forests in western North America had fire return intervals (FRI) of 70–130 years, but shortened FRIs are becoming increasingly common under extreme weather conditions. Here, we quantified pre-fire and post-fire C pools and C losses and assessed post-fire seedling regeneration in long (> 70 years), intermediate (30–70 years), and short (< 30 years) FRIs, and triple (three fires in < 70 years) burns. As boreal forests store a significant portion of the global terrestrial carbon (C) pool, understanding the impacts of shortened FRIs on these ecosystems is critical for predicting the global C balance and feedbacks to climate. ResultsUsing a spatially extensive dataset of 555 plots from 31 separate fires in Interior Alaska, our study demonstrates that shortened FRIs decrease the C storage capacity of boreal forests through loss of legacy C and regeneration failure. Total wildfire C emissions were similar among FRI classes, ranging from 2.5 to 3.5 kg C m−2. However, shortened FRIs lost proportionally more of their pre-fire C pools, resulting in substantially lower post-fire C pools than long FRIs. Shortened FRIs also resulted in the combustion of legacy C, defined as C that escaped combustion in one or more previous fires. We found that post-fire successional trajectories were impacted by FRI, with ~ 65% of short FRIs and triple burns experiencing regeneration failure. ConclusionsOur study highlights the structural and functional vulnerability of boreal forests to increasing fire frequency. Shortened FRIs and the combustion of legacy C can shift boreal ecosystems from a net C sink or neutral to a net C source to the atmosphere and increase the risk of transitions to non-forested states. These changes could have profound implications for the boreal C-climate feedback and underscore the need for adaptive management strategies that prioritize the structural and functional resilience of boreal forest ecosystems to expected increases in fire frequency.more » « less
-
Forest ecosystems are important global soil carbon (C) reservoirs, but their capacity to sequester C is susceptible to climate change factors that alter the quantity and quality of C inputs. To better understand forest soil C responses to altered C inputs, we integrated three molecular composition published data sets of soil organic matter (SOM) and soil microbial communities for mineral soils after 20 years of detrital input and removal treatments in two deciduous forests: Bousson Forest (BF), Harvard Forest (HF), and a coniferous forest: H.J. Andrews Forest (HJA). Soil C turnover times were estimated from radiocarbon measurements and compared with the molecular‐level data (based on nuclear magnetic resonance and specific analysis of plant‐ and microbial‐derived compounds) to better understand how ecosystem properties control soil C biogeochemistry and dynamics. Doubled aboveground litter additions did not increase soil C for any of the forests studied likely due to long‐term soil priming. The degree of SOM decomposition was higher for bacteria‐dominated sites with higher nitrogen (N) availability while lower for the N‐poor coniferous forest. Litter exclusions significantly decreased soil C, increased SOM decomposition state, and led to the adaptation of the microbial communities to changes in available substrates. Finally, although aboveground litter determined soil C dynamics and its molecular composition in the coniferous forest (HJA), belowground litter appeared to be more influential in broadleaf deciduous forests (BH and HF). This synthesis demonstrates that inherent ecosystem properties regulate how soil C dynamics change with litter manipulations at the molecular‐level. Across the forests studied, 20 years of litter additions did not enhance soil C content, whereas litter reductions negatively impacted soil C concentrations. These results indicate that soil C biogeochemistry at these temperate forests is highly sensitive to changes in litter deposition, which are a product of environmental change drivers.more » « less
-
Abstract Climate change may alter soil microbial communities and soil organic matter (SOM) composition. Soil carbon (C) cycling takes place over multiple time scales; therefore, long-term studies are essential to better understand the factors influencing C storage and help predict responses to climate change. To investigate this further, soils that were heated by 5 °C above ambient soil temperatures for 18 years were collected from the Barre Woods Soil Warming Study at the Harvard Forest Long-term Ecological Research site. This site consists of large 30 × 30 m plots (control or heated) where entire root systems are exposed to sustained warming conditions. Measurements included soil C and nitrogen concentrations, microbial biomass, and SOM chemistry using gas chromatography–mass spectrometry and solid-state13C nuclear magnetic resonance spectroscopy. These complementary techniques provide a holistic overview of all SOM components and a comprehensive understanding of SOM composition at the molecular-level. Our results showed that soil C concentrations were not significantly altered with warming; however, various molecular-level alterations to SOM chemistry were observed. We found evidence for both enhanced SOM decomposition and increased above-ground plant inputs with long-term warming. We also noted shifts in microbial community composition while microbial biomass remained largely unchanged. These findings suggest that prolonged warming induced increased availability of preferred substrates, leading to shifts in the microbial community and SOM biogeochemistry. The observed increase in gram-positive bacteria indicated changes in substrate availability as gram-positive bacteria are often associated with the decomposition of complex organic matter, while gram-negative bacteria preferentially break down simpler organic compounds altering SOM composition over time. Our results also highlight that additional plant inputs do not effectively offset chronic warming-induced SOM decomposition in temperate forests.more » « less
An official website of the United States government

