skip to main content


Title: Crystal nucleation in poly(ether ether ketone)/carbon nanotube nanocomposites at high and low supercooling of the melt
The engineering thermoplastic poly(ether ether ketone) (PEEK) has a rigid backbone that crystallizes relatively slowly upon cooling the melt. In this study, fast scanning chip calorimetry (FSC) was used to analyze isothermal crystallization between 170 and 285 °C, a range from about 27 K above the glass transition temperature up to the melting temperature. Incorporation of carbon nanotubes (CNT) enhances nucleation at all crystallization temperatures, including low temperatures. FSC also was employed to study crystallization at cooling rates spanning 0.33 to 8000 K/s, important as PEEK is subject to these conditions during melt processing. The critical cooling rate to produce a vitrified sample was increased from 500 K/s in the neat PEEK to 4000 K/s in a 5% CNT/PEEK nanocomposite due to faster nucleation rate caused by heterogeneous nucleation.  more » « less
Award ID(s):
1653629
NSF-PAR ID:
10474746
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Polymer
Volume:
199
Issue:
C
ISSN:
0032-3861
Page Range / eLocation ID:
122548
Subject(s) / Keyword(s):
["carbon nanotube","poly (ether ether keytone)","supercooling","polymer crystallization","nucleation"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Both heterogeneous nucleation and flow‐induced entropy reduction are the two well‐known factors that accelerate polymer crystallization. However, the interplay of nucleation and flow‐induced acceleration is still poorly understood. This work investigates the nucleating effect of carbon nanotubes (CNT) on both the quiescent and flow‐induced crystallization kinetics of polyamide 66 (PA 66). The quiescent crystallization study indicates that CNT acts as a powerful nucleant, as suggested by the fact that the critical cooling rate to bypass crystallization and create the amorphous glassy state changes from 1000 K s−1in PA 66 neat resin to a rate faster than 4000 K s−1in the PA 66 nanocomposites. The flow‐induced crystallization study indicates PA 66 onset crystallization time and morphology depend on the shear work introduced by rotational rheometry. A combined acceleration effect from CNT nucleants and flow‐induced crystallization (FIC) persists when the CNT loading is under the saturation limit. However, if CNT loading meets the saturation limit, specific shear work shows no impact on the crystallization time, providing evidence that the role of the FIC acceleration effect no longer exists when nucleant acceleration dominates the crystallization of PA 66.

     
    more » « less
  2. The granitic water-saturated solidus (G-WSS) is the lower temperature limit of magmatic mineral crystallization. The accepted water-saturated solidus for granitic compositions was largely determined >60 years ago1. More recent advances in experimental petrology, improved analytical techniques, and recent observations that granitic systems can remain active or spend a significant proportion of their lives at conditions below the traditional G-WSS2–5 necessitate a careful experimental investigation of the near-solidus regions of granitic systems. Natural and synthetic starting materials were melted at 10 kbar and 900°C with 48 wt% H2O to produce hydrous glasses for subsequent experiments at lower PT conditions used to locate the G-WSS. We performed crystallization experiments and melting experiments at temperatures ranging from 575 to 800°C and 1, 6, 8, and 10 kbar on 12 granitoid compositions. First, we ran a series of isothermal crystallization experiments along each isobar at progressively lower temperatures until runs completely crystallized to identify apparent solidus temperatures. Geochemical analyses of quenched glass compositions demonstrate that progressive crystallization drives all starting compositions towards silica-rich, water-saturated rhyolitic/granitic melts (e.g., ~7578 wt% SiO2). After identifying the apparent solidus temperatures at which the various compositions crystallized, we then ran series of reversal-type melting experiments. With the goal of producing rocks with hydrous equilibrium microstructures, we crystallized compositions at temperatures ~10°C below the apparent solidus identified in crystallization experiments, and then heated isobarically to conditions that produced ~20% melt during the crystallization experiments. Importantly, crystallization experiments and heating experiments at the same PT conditions produced similar proportions of melt, crystals, and vapor. A time-series of experiments 230 days at PT conditions previously identified to produce ~10% to 20% melt did not reveal any kinetic effects on melt crystallization. Experiments at 6 to 10 kbar crystallized/melted at temperatures close to the published G-WSS. However, at lower pressures where the published G-WSS is strongly curved in PT space, all compositions investigated contained melt to temperatures ~75 to 100°C below the accepted G-WSS. The similarity of crystallization temperatures for the higher-pressure experiments to previously published results, similar phase proportions in melting and crystallization experiments, and the lack of kinetic effects on crystallization collectively suggest that our lower pressure constraints on the G-WSS are accurate. The new experimental results demonstrating that the lower-pressure G-WSS is significantly lower than unanimously accepted estimates will help us to better understand the storage conditions, evolution, and potential for eruption in mid- to upper-crustal silicic magmatic systems. (1) Tuttle, O.; Bowen, N. Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8–KAlSi3O8–SiO2–H2O; Geological Society of America Memoirs; Geological Society of America, 1958; Vol. 74. https://doi.org/10.1130/MEM74. (2) Rubin, A. E.; Cooper, K. M.; Till, C. B.; Kent, A. J. R.; Costa, F.; Bose, M.; Gravley, D.; Deering, C.; Cole, J. Rapid Cooling and Cold Storage in a Silicic Magma Reservoir Recorded in Individual Crystals. Science 2017, 356 (6343), 1154–1156. https://doi.org/10.1126/science.aam8720. (3) Andersen, N. L.; Jicha, B. R.; Singer, B. S.; Hildreth, W. Incremental Heating of Bishop Tuff Sanidine Reveals Preeruptive Radiogenic Ar and Rapid Remobilization from Cold Storage. Proceedings of the National Academy of Sciences 2017, 114 (47), 12407–12412. https://doi.org/10.1073/pnas.1709581114. (4) Ackerson, M. R.; Mysen, B. O.; Tailby, N. D.; Watson, E. B. Low-Temperature Crystallization of Granites and the Implications for Crustal Magmatism. Nature 2018, 559 (7712), 94–97. https://doi.org/10.1038/s41586-018-0264-2. (5) Glazner, A. F.; Bartley, J. M.; Coleman, D. S.; Lindgren, K. Aplite Diking and Infiltration: A Differentiation Mechanism Restricted to Plutonic Rocks. Contributions to Mineralogy and Petrology 2020, 175 (4). https://doi.org/10.1007/s00410-020-01677-1. 
    more » « less
  3. To understand the mechanism underlying the fast, reversible, phase transformation, information about the atomic structure and defects structures in phase change materials class is key. PCMs are investigated for many applications. These devices are chalcogenide based and use self heating to quickly switch between amorphous and crystalline phases, generating orders of magnitude differences in the electrical resistivity. The main challenges with PCMs have been the large power required to heat above crystallization or melting (for melt-quench amorphization) temperatures and limited reliability due to factors such as resistance drifts of the metastable phases, void formation and elemental segregation upon cycling. Characterization of devices and their unique switching behavior result in distinct material properties affected by the atomic arrangement in the respective phase. TEM is used to study the atomic structure of the metastable crystalline phase. The aim is to correlate the microstructure with results from electrical characterization, building on R vs T measurements on various thicknesses GST thin films. To monitor phase changes in real-time as a function of temperature, thin films are deposited directly onto Protochips carriers. The Protochips heating holders provides controlled temperature changes while imaging in the TEM. These studies can provide insights into how changes occur in the various phase transformations even though the rate of temperature change is much slower than the PCM device operation. Other critical processes such as void formation, grain evolution and the cause of resistance drift can thereby be related to changes in structure and chemistry. Materials characterization is performed using Tecnai F30 and Titan ETEM microscopes, operating at 300kV. Both the microscopes can accept the same Protochips heating holders. The K2 direct electron detector camera equipped with the ETEM allows high-speed video recording (1600 f/s) of structural changes occurring in these materials upon heating and cooling. In this presentation, we will describe the effect of heating thin films of different thickness and composition, the changes in crystallinity and grain size, and how these changes correlate with changes in the electrical properties of the films. We will emphasize that it is always important to use low-dose and/or beam blanking techniques to distinguish changes induced by the beam from those due to the heating or introduction of an electric current. 
    more » « less
  4. Osteoblastic and chemical responses to Poly (ether ether ketone) (PEEK) material have been improved using a variety of low-temperature plasmas (LTPs). Surface chemical properties are modified, and can be used, using low-temperature plasma (LTP) treatments which change surface functional groups. These functional groups increase biomineralization, in simulated body fluid conditions, and cellular viability. PEEK scaffolds were treated, with a variety of LTPs, incubated in simulated body fluids, and then analyzed using multiple techniques. First, scanning electron microscopy (SEM) showed morphological changes in the biomineralization for all samples. Calcein staining, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) confirmed that all low-temperature plasma-treated groups showed higher levels of biomineralization than the control group. MTT cell viability assays showed LTP-treated groups had increased cell viability in comparison to non-LTP-treated controls. PEEK treated with triethyl phosphate plasma (TEP) showed higher levels of cellular viability at 82.91% ± 5.00 (n = 6) and mineralization. These were significantly different to both the methyl methacrylate (MMA) 77.38% ± 1.27, ethylene diamine (EDA) 64.75% ± 6.43 plasma-treated PEEK groups, and the control, non-plasma-treated group 58.80 ± 2.84. FTIR showed higher levels of carbonate and phosphate formation on the TEP-treated PEEK than the other samples; however, calcein staining fluorescence of MMA and TEP-treated PEEK had the highest levels of biomineralization measured by pixel intensity quantification of 101.17 ± 4.63 and 96.35 ± 3.58, respectively, while EDA and control PEEK samples were 89.53 ± 1.74 and 90.49 ± 2.33, respectively. Comparing different LTPs, we showed that modified surface chemistry has quantitatively measurable effects that are favorable to the cellular, biomineralization, and chemical properties of PEEK.

     
    more » « less
  5. Abstract

    This study investigates the evolution of temperature and lifetime of evaporating, supercooled cloud droplets considering initial droplet radius (r0) and temperature (), and environmental relative humidity (RH), temperature (T), and pressure (P). The time (tss) required by droplets to reach a lower steady-state temperature (Tss) after sudden introduction into a new subsaturated environment, the magnitude of ΔT=TTss, and droplet survival time (tst) atTssare calculated. The temperature difference (ΔT) is found to increase withT, and decrease with RH andP. ΔTwas typically 1–5 K lower thanT, with highest values (∼10.3 K) for very low RH, lowP, andTcloser to 0°C. Results show thattssis <0.5 s over the range of initial droplet and environmental conditions considered. Larger droplets (r0= 30–50μm) can survive atTssfor about 5 s to over 10 min, depending on the subsaturation of the environment. For higher RH and larger droplets, droplet lifetimes can increase by more than 100 s compared to those with droplet cooling ignored.Tssof the evaporating droplets can be approximated by the environmental thermodynamic wet-bulb temperature. Radiation was found to play a minor role in influencing droplet temperatures, except for larger droplets in environments close to saturation. The implications for ice nucleation in cloud-top generating cells and near cloud edges are discussed. UsingTssinstead ofTin widely used parameterization schemes could lead to enhanced number concentrations of activated ice-nucleating particles (INPs), by a typical factor of 2–30, with the greatest increases (≥100) coincident with low RH, lowP, andTcloser to 0°C.

    Significance Statement

    Cloud droplet temperature plays an important role in fundamental cloud processes like droplet growth and decay, activation of ice-nucleating particles, and determination of radiative parameters like refractive indices of water droplets. Near cloud boundaries such as cloud tops, dry air mixes with cloudy air exposing droplets to environments with low relative humidities. This study examines how the temperature of a cloud droplet that is supercooled (i.e., has an initial temperature < 0°C) evolves in these subsaturated environments. Results show that when supercooled cloud droplets evaporate near cloud boundaries, their temperatures can be several degrees Celsius lower than the surrounding drier environment. The implications of this additional cooling of droplets near cloud edges on ice particle formation are discussed.

     
    more » « less