skip to main content


Title: Deep learning-based phenotype imputation on population-scale biobank data increases genetic discoveries
Abstract

Biobanks that collect deep phenotypic and genomic data across many individuals have emerged as a key resource in human genetics. However, phenotypes in biobanks are often missing across many individuals, limiting their utility. We propose AutoComplete, a deep learning-based imputation method to impute or ‘fill-in’ missing phenotypes in population-scale biobank datasets. When applied to collections of phenotypes measured across ~300,000 individuals from the UK Biobank, AutoComplete substantially improved imputation accuracy over existing methods. On three traits with notable amounts of missingness, we show that AutoComplete yields imputed phenotypes that are genetically similar to the originally observed phenotypes while increasing the effective sample size by about twofold on average. Further, genome-wide association analyses on the resulting imputed phenotypes led to a substantial increase in the number of associated loci. Our results demonstrate the utility of deep learning-based phenotype imputation to increase power for genetic discoveries in existing biobank datasets.

 
more » « less
NSF-PAR ID:
10474836
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Genetics
Volume:
55
Issue:
12
ISSN:
1061-4036
Format(s):
Medium: X Size: p. 2269-2276
Size(s):
["p. 2269-2276"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Biobanks often contain several phenotypes relevant to diseases such as major depressive disorder (MDD), with partly distinct genetic architectures. Researchers face complex tradeoffs between shallow (large sample size, low specificity/sensitivity) and deep (small sample size, high specificity/sensitivity) phenotypes, and the optimal choices are often unclear. Here we propose to integrate these phenotypes to combine the benefits of each. We use phenotype imputation to integrate information across hundreds of MDD-relevant phenotypes, which significantly increases genome-wide association study (GWAS) power and polygenic risk score (PRS) prediction accuracy of the deepest available MDD phenotype in UK Biobank, LifetimeMDD. We demonstrate that imputation preserves specificity in its genetic architecture using a novel PRS-based pleiotropy metric. We further find that integration via summary statistics also enhances GWAS power and PRS predictions, but can introduce nonspecific genetic effects depending on input. Our work provides a simple and scalable approach to improve genetic studies in large biobanks by integrating shallow and deep phenotypes.

     
    more » « less
  2. Biobanks linked to electronic health records provide rich resources for health‐related research. With improvements in administrative and informatics infrastructure, the availability and utility of data from biobanks have dramatically increased. In this paper, we first aim to characterize the current landscape of available biobanks and to describe specific biobanks, including their place of origin, size, and data types. The development and accessibility of large‐scale biorepositories provide the opportunity to accelerate agnostic searches, expedite discoveries, and conduct hypothesis‐generating studies of disease‐treatment, disease‐exposure, and disease‐gene associations. Rather than designing and implementing a single study focused on a few targeted hypotheses, researchers can potentially use biobanks' existing resources to answer an expanded selection of exploratory questions as quickly as they can analyze them. However, there are many obvious and subtle challenges with the design and analysis of biobank‐based studies. Our second aim is to discuss statistical issues related to biobank research such as study design, sampling strategy, phenotype identification, and missing data. We focus our discussion on biobanks that are linked to electronic health records. Some of the analytic issues are illustrated using data from the Michigan Genomics Initiative and UK Biobank, two biobanks with two different recruitment mechanisms. We summarize the current body of literature for addressing these challenges and discuss some standing open problems. This work complements and extends recent reviews about biobank‐based research and serves as a resource catalog with analytical and practical guidance for statisticians, epidemiologists, and other medical researchers pursuing research using biobanks.

     
    more » « less
  3. We investigate the fairness concerns of training a machine learning model using data with missing values. Even though there are a number of fairness intervention methods in the literature, most of them require a complete training set as input. In practice, data can have missing values, and data missing patterns can depend on group attributes (e.g. gender or race). Simply applying off-the-shelf fair learning algorithms to an imputed dataset may lead to an unfair model. In this paper, we first theoretically analyze different sources of discrimination risks when training with an imputed dataset. Then, we propose an integrated approach based on decision trees that does not require a separate process of imputation and learning. Instead, we train a tree with missing incorporated as attribute (MIA), which does not require explicit imputation, and we optimize a fairness-regularized objective function. We demonstrate that our approach outperforms existing fairness intervention methods applied to an imputed dataset, through several experiments on real-world datasets. 
    more » « less
  4. Abstract Background

    Genotypes are strongly associated with disease phenotypes, particularly in brain disorders. However, the molecular and cellular mechanisms behind this association remain elusive. With emerging multimodal data for these mechanisms, machine learning methods can be applied for phenotype prediction at different scales, but due to the black-box nature of machine learning, integrating these modalities and interpreting biological mechanisms can be challenging. Additionally, the partial availability of these multimodal data presents a challenge in developing these predictive models.

    Method

    To address these challenges, we developed DeepGAMI, an interpretable neural network model to improve genotype–phenotype prediction from multimodal data. DeepGAMI leverages functional genomic information, such as eQTLs and gene regulation, to guide neural network connections. Additionally, it includes an auxiliary learning layer for cross-modal imputation allowing the imputation of latent features of missing modalities and thus predicting phenotypes from a single modality. Finally, DeepGAMI uses integrated gradient to prioritize multimodal features for various phenotypes.

    Results

    We applied DeepGAMI to several multimodal datasets including genotype and bulk and cell-type gene expression data in brain diseases, and gene expression and electrophysiology data of mouse neuronal cells. Using cross-validation and independent validation, DeepGAMI outperformed existing methods for classifying disease types, and cellular and clinical phenotypes, even using single modalities (e.g., AUC score of 0.79 for Schizophrenia and 0.73 for cognitive impairment in Alzheimer’s disease).

    Conclusion

    We demonstrated that DeepGAMI improves phenotype prediction and prioritizes phenotypic features and networks in multiple multimodal datasets in complex brains and brain diseases. Also, it prioritized disease-associated variants, genes, and regulatory networks linked to different phenotypes, providing novel insights into the interpretation of gene regulatory mechanisms. DeepGAMI is open-source and available for general use.

     
    more » « less
  5. null (Ed.)
    Abstract Motivation Mapping genetic interactions (GIs) can reveal important insights into cellular function and has potential translational applications. There has been great progress in developing high-throughput experimental systems for measuring GIs (e.g. with double knockouts) as well as in defining computational methods for inferring (imputing) unknown interactions. However, existing computational methods for imputation have largely been developed for and applied in baker’s yeast, even as experimental systems have begun to allow measurements in other contexts. Importantly, existing methods face a number of limitations in requiring specific side information and with respect to computational cost. Further, few have addressed how GIs can be imputed when data are scarce. Results In this article, we address these limitations by presenting a new imputation framework, called Extensible Matrix Factorization (EMF). EMF is a framework of composable models that flexibly exploit cross-species information in the form of GI data across multiple species, and arbitrary side information in the form of kernels (e.g. from protein–protein interaction networks). We perform a rigorous set of experiments on these models in matched GI datasets from baker’s and fission yeast. These include the first such experiments on genome-scale GI datasets in multiple species in the same study. We find that EMF models that exploit side and cross-species information improve imputation, especially in data-scarce settings. Further, we show that EMF outperforms the state-of-the-art deep learning method, even when using strictly less data, and incurs orders of magnitude less computational cost. Availability Implementations of models and experiments are available at: https://github.com/lrgr/EMF. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less