skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Can polygenic risk scores help explain disease prevalence differences around the world? A worldwide investigation
Abstract Complex disorders are caused by a combination of genetic, environmental and lifestyle factors, and their prevalence can vary greatly across different populations. The extent to which genetic risk, as identified by Genome Wide Association Study (GWAS), correlates to disease prevalence in different populations has not been investigated systematically. Here, we studied 14 different complex disorders and explored whether polygenic risk scores (PRS) based on current GWAS correlate to disease prevalence within Europe and around the world. A clear variation in GWAS-based genetic risk was observed based on ancestry and we identified populations that have a higher genetic liability for developing certain disorders. We found that for four out of the 14 studied disorders, PRS significantly correlates to disease prevalence within Europe. We also found significant correlations between worldwide disease prevalence and PRS for eight of the studied disorders with Multiple Sclerosis genetic risk having the highest correlation to disease prevalence. Based on current GWAS results, the across population differences in genetic risk for certain disorders can potentially be used to understand differences in disease prevalence and identify populations with the highest genetic liability. The study highlights both the limitations of PRS based on current GWAS but also the fact that in some cases, PRS may already have high predictive power. This could be due to the genetic architecture of specific disorders or increased GWAS power in some cases.  more » « less
Award ID(s):
1715202
PAR ID:
10474870
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
BMC Genomic Data
Volume:
24
Issue:
1
ISSN:
2730-6844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IntroductionAutoimmune disorders (ADs) are a group of about 80 disorders that occur when self-attacking autoantibodies are produced due to failure in the self-tolerance mechanisms. ADs are polygenic disorders and associations with genes both in the human leukocyte antigen (HLA) region and outside of it have been described. Previous studies have shown that they are highly comorbid with shared genetic risk factors, while epidemiological studies revealed associations between various lifestyle and health-related phenotypes and ADs. MethodsHere, for the first time, we performed a comparative polygenic risk score (PRS) - Phenome Wide Association Study (PheWAS) for 11 different ADs (Juvenile Idiopathic Arthritis, Primary Sclerosing Cholangitis, Celiac Disease, Multiple Sclerosis, Rheumatoid Arthritis, Psoriasis, Myasthenia Gravis, Type 1 Diabetes, Systemic Lupus Erythematosus, Vitiligo Late Onset, Vitiligo Early Onset) and 3,254 phenotypes available in the UK Biobank that include a wide range of socio-demographic, lifestyle and health-related outcomes. Additionally, we investigated the genetic relationships of the studied ADs, calculating their genetic correlation and conducting cross-disorder GWAS meta-analyses for the observed AD clusters. ResultsIn total, we identified 508 phenotypes significantly associated with at least one AD PRS. 272 phenotypes were significantly associated after excluding variants in the HLA region from the PRS estimation. Through genetic correlation and genetic factor analyses, we identified four genetic factors that run across studied ADs. Cross-trait meta-analyses within each factor revealed pleiotropic genome-wide significant loci. DiscussionOverall, our study confirms the association of different factors with genetic susceptibility for ADs and reveals novel observations that need to be further explored. 
    more » « less
  2. Abstract Biobanks often contain several phenotypes relevant to diseases such as major depressive disorder (MDD), with partly distinct genetic architectures. Researchers face complex tradeoffs between shallow (large sample size, low specificity/sensitivity) and deep (small sample size, high specificity/sensitivity) phenotypes, and the optimal choices are often unclear. Here we propose to integrate these phenotypes to combine the benefits of each. We use phenotype imputation to integrate information across hundreds of MDD-relevant phenotypes, which significantly increases genome-wide association study (GWAS) power and polygenic risk score (PRS) prediction accuracy of the deepest available MDD phenotype in UK Biobank, LifetimeMDD. We demonstrate that imputation preserves specificity in its genetic architecture using a novel PRS-based pleiotropy metric. We further find that integration via summary statistics also enhances GWAS power and PRS predictions, but can introduce nonspecific genetic effects depending on input. Our work provides a simple and scalable approach to improve genetic studies in large biobanks by integrating shallow and deep phenotypes. 
    more » « less
  3. Abstract The emergence of genome-wide association studies (GWAS) has led to the creation of large repositories of human genetic variation, creating enormous opportunities for genetic research and worldwide collaboration. Methods that are based on GWAS summary statistics seek to leverage such records, overcoming barriers that often exist in individual-level data access while also offering significant computational savings. Such summary-statistics-based applications include GWAS meta-analysis, with and without sample overlap, and case-case GWAS. We compare performance of leading methods for summary-statistics-based genomic analysis and also introduce a novel framework that can unify usual summary-statistics-based implementations via the reconstruction of allelic and genotypic frequencies and counts (ReACt). First, we evaluate ASSET, METAL, and ReACt using both synthetic and real data for GWAS meta-analysis (with and without sample overlap) and find that, while all three methods are comparable in terms of power and error control, ReACt and METAL are faster than ASSET by a factor of at least hundred. We then proceed to evaluate performance of ReACt vs an existing method for case-case GWAS and show comparable performance, with ReACt requiring minimal underlying assumptions and being more user-friendly. Finally, ReACt allows us to evaluate, for the first time, an implementation for calculating polygenic risk score (PRS) for groups of cases and controls based on summary statistics. Our work demonstrates the power of GWAS summary-statistics-based methodologies and the proposed novel method provides a unifying framework and allows further extension of possibilities for researchers seeking to understand the genetics of complex disease. 
    more » « less
  4. Background Myasthenia gravis (MG) is a rare autoimmune disorder affecting the neuromuscular junction (NMJ). Here, we investigate the genetic architecture of MG via a genome-wide association study (GWAS) of the largest MG data set analysed to date. Methods We performed GWAS meta-analysis integrating three different data sets (total of 1401 cases and 3508 controls). We carried out human leucocyte antigen (HLA) fine-mapping, gene-based and tissue enrichment analyses and investigated genetic correlation with 13 other autoimmune disorders as well as pleiotropy across MG and correlated disorders. Results We confirmed the previously reported MG association with TNFRSF11A (rs4369774; p=1.09×10 −13 , OR=1.4). Furthermore, gene-based analysis revealed AGRN as a novel MG susceptibility gene. HLA fine-mapping pointed to two independent MG loci: HLA-DRB1 and HLA-B . MG onset-specific analysis reveals differences in the genetic architecture of early-onset MG (EOMG) versus late-onset MG (LOMG). Furthermore, we find MG to be genetically correlated with type 1 diabetes (T1D), rheumatoid arthritis (RA), late-onset vitiligo and autoimmune thyroid disease (ATD). Cross-disorder meta-analysis reveals multiple risk loci that appear pleiotropic across MG and correlated disorders. Discussion Our gene-based analysis identifies AGRN as a novel MG susceptibility gene, implicating for the first time a locus encoding a protein (agrin) that is directly relevant to NMJ activation. Mutations in AGRN have been found to underlie congenital myasthenic syndrome. Our results are also consistent with previous studies highlighting the role of HLA and TNFRSF11A in MG aetiology and the different risk genes in EOMG versus LOMG. Finally, we uncover the genetic correlation of MG with T1D, RA, ATD and late-onset vitiligo, pointing to shared underlying genetic mechanisms. 
    more » « less
  5. Abstract Tourette Syndrome (TS) is a complex neurodevelopmental disorder characterized by vocal and motor tics lasting more than a year. It is highly polygenic in nature with both rare and common previously associated variants. Epidemiological studies have shown TS to be correlated with other phenotypes, but large-scale phenome wide analyses in biobank level data have not been performed to date. In this study, we used the summary statistics from the latest meta-analysis of TS to calculate the polygenic risk score (PRS) of individuals in the UK Biobank data and applied a Phenome Wide Association Study (PheWAS) approach to determine the association of disease risk with a wide range of phenotypes. A total of 57 traits were found to be significantly associated with TS polygenic risk, including multiple psychosocial factors and mental health conditions such as anxiety disorder and depression. Additional associations were observed with complex non-psychiatric disorders such as Type 2 diabetes, heart palpitations, and respiratory conditions. Cross-disorder comparisons of phenotypic associations with genetic risk for other childhood-onset disorders (e.g.: attention deficit hyperactivity disorder [ADHD], autism spectrum disorder [ASD], and obsessive-compulsive disorder [OCD]) indicated an overlap in associations between TS and these disorders. ADHD and ASD had a similar direction of effect with TS while OCD had an opposite direction of effect for all traits except mental health factors. Sex-specific PheWAS analysis identified differences in the associations with TS genetic risk between males and females. Type 2 diabetes and heart palpitations were significantly associated with TS risk in males but not in females, whereas diseases of the respiratory system were associated with TS risk in females but not in males. This analysis provides further evidence of shared genetic and phenotypic architecture of different complex disorders. 
    more » « less