The paper reports ongoing research toward the design of multimodal affective pedagogical agents that are effective for different types of learners and applications. In particular, the work reported in the paper investigated the extent to which the type of character design (realistic versus stylized) affects students’ perception of an animated agent’s facial emotions, and whether the effects are moderated by learner characteristics (e.g. gender). Eighty-two participants viewed 10 animation clips featuring a stylized character exhibiting 5 different emotions, e.g. happiness, sadness, fear, surprise and anger (2 clips per emotion), and 10 clips featuring a realistic character portraying the same emotional states. The participants were asked to name the emotions and rate their sincerity, intensity, and typicality. The results indicated that for recognition, participants were slightly more likely to recognize the emotions displayed by the stylized agent, although the difference was not statistically significant. The stylized agent was on average rated significantly higher for facial emotion intensity, whereas the differences in ratings for typicality and sincerity across all emotions were not statistically significant. A significant difference in ratings was shown in regard to sadness (within typicality), happiness (within sincerity), fear, anger, sadness and happiness (within intensity) with the stylized agent rated higher. Gender was not a significant correlate across all emotions or for individual emotions.
more »
« less
Does the Voice Reveal More Emotion than the Face? a Study with Animated Agents.
In general, people tend to identify the emotions of others from their facial expressions, however recent findings suggest that we may be more accurate when we hear someone’s voice than when we look only at their facial expression. The study reported in the paper examined whether these findings hold true for animated agents. A total of 37 subjects participated in the study: 19 males, 14 females, and 4 of non-specified gender. Subjects were asked to view 18 video stimuli; 9 clips featured a male agent and 9 clips a female agent. Each agent showed 3 different facial expressions (happy, angry, neutral), each one paired with 3 different voice lines spoken in three different tones (happy, angry, neutral). Hence, in some clips the agent’s tone of voice and facial expression were congruent, while in some videos they were not. Subjects answered questions regarding the emotion they believed the agent was feeling and rated the emotion intensity, typicality, and sincerity. Findings showed that emotion recognition rate and ratings of emotion intensity, typicality and sincerity were highest when the agent’s face and voice were congruent. However, when the channels were incongruent, subjects identified the emotion more accurately from the agent’s facial expression than the tone of voice.
more »
« less
- Award ID(s):
- 1821894
- PAR ID:
- 10474999
- Publisher / Repository:
- Springer Link
- Date Published:
- Journal Name:
- Fang, X. (eds) HCI in Games. HCII 2023. Lecture Notes in Computer Science, vol 14047
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The overall goal of our research is to develop a system of intelligent multimodal affective pedagogical agents that are effective for different types of learners (Adamo et al., 2021). While most of the research on pedagogical agents tends to focus on the cognitive aspects of online learning and instruction, this project explores the less-studied role of affective (or emotional) factors. We aim to design believable animated agents that can convey realistic, natural emotions through speech, facial expressions, and body gestures and that can react to the students’ detected emotional states with emotional intelligence. Within the context of this goal, the specific objective of the work reported in the paper was to examine the extent to which the agents’ facial micro-expressions affect students’ perception of the agents’ emotions and their naturalness. Micro-expressions are very brief facial expressions that occur when a person either deliberately or unconsciously conceals an emotion being felt (Ekman &Friesen, 1969). Our assumption is that if the animated agents display facial micro expressions in addition to macro expressions, they will convey higher expressive richness and naturalness to the viewer, as “the agents can possess two emotional streams, one based on interaction with the viewer and the other based on their own internal state, or situation” (Queiroz et al. 2014, p.2).The work reported in the paper involved two studies with human subjects. The objectives of the first study were to examine whether people can recognize micro-expressions (in isolation) in animated agents, and whether there are differences in recognition based on the agent’s visual style (e.g., stylized versus realistic). The objectives of the second study were to investigate whether people can recognize the animated agents’ micro-expressions when integrated with macro-expressions, the extent to which the presence of micro + macro-expressions affect the perceived expressivity and naturalness of the animated agents, the extent to which exaggerating the micro expressions, e.g. increasing the amplitude of the animated facial displacements affects emotion recognition and perceived agent naturalness and emotional expressivity, and whether there are differences based on the agent’s design characteristics. In the first study, 15 participants watched eight micro-expression animations representing four different emotions (happy, sad, fear, surprised). Four animations featured a stylized agent and four a realistic agent. For each animation, subjects were asked to identify the agent’s emotion conveyed by the micro-expression. In the second study, 234 participants watched three sets of eight animation clips (24 clips in total, 12 clips per agent). Four animations for each agent featured the character performing macro-expressions only, four animations for each agent featured the character performing macro- + micro-expressions without exaggeration, and four animations for each agent featured the agent performing macro + micro-expressions with exaggeration. Participants were asked to recognize the true emotion of the agent and rate the emotional expressivity ad naturalness of the agent in each clip using a 5-point Likert scale. We have collected all the data and completed the statistical analysis. Findings and discussion, implications for research and practice, and suggestions for future work will be reported in the full paper. ReferencesAdamo N., Benes, B., Mayer, R., Lei, X., Meyer, Z., &Lawson, A. (2021). Multimodal Affective Pedagogical Agents for Different Types of Learners. In: Russo D., Ahram T., Karwowski W., Di Bucchianico G., Taiar R. (eds) Intelligent Human Systems Integration 2021. IHSI 2021. Advances in Intelligent Systems and Computing, 1322. Springer, Cham. https://doi.org/10.1007/978-3-030-68017-6_33Ekman, P., &Friesen, W. V. (1969, February). Nonverbal leakage and clues to deception. Psychiatry, 32(1), 88–106. https://doi.org/10.1080/00332747.1969.11023575 Queiroz, R. B., Musse, S. R., &Badler, N. I. (2014). Investigating Macroexpressions and Microexpressions in Computer Graphics Animated Faces. Presence, 23(2), 191-208. http://dx.doi.org/10.1162/more » « less
-
This study examines an aspect of the role of emotion in multimedia learning, i.e., whether participants can recognize the instructor’s positive or negative emotion based on hearing short clips involving only the instructor’s voice just as well as also seeing an embodied onscreen agent. Participants viewed 16 short video clips from a statistics lecture in which an animated instructor, conveying a happy, content, frustrated, or bored emotion, stands next to a slide as she lectures (agent present) or uses only her voice (agent absent). For each clip, participants rated the instructor on five-point scales for how happy, content, frustrated, and bored the instructor seemed. First, for happy, content, and bored instructors, participants were just as accurate in rating emotional tone based on voice only as with voice plus onscreen agent. This supports the voice hypothesis, which posits that voice is a powerful source of social-emotional information. Second, participants rated happy and content instructors higher on happy and content scales and rated frustrated and bored instructors higher on frustrated and bored scales. This supports the positivity hypothesis, which posits that people are particularly sensitive to the positive or negative tone of multimedia instructional messages.more » « less
-
The expression of human emotion is integral to social interaction, and in virtual reality it is increasingly common to develop virtual avatars that attempt to convey emotions by mimicking these visual and aural cues, i.e. the facial and vocal expressions. However, errors in (or the absence of) facial tracking can result in the rendering of incorrect facial expressions on these virtual avatars. For example, a virtual avatar may speak with a happy or unhappy vocal inflection while their facial expression remains otherwise neutral. In circumstances where there is conflict between the avatar's facial and vocal expressions, it is possible that users will incorrectly interpret the avatar's emotion, which may have unintended consequences in terms of social influence or in terms of the outcome of the interaction. In this paper, we present a human-subjects study (N = 22) aimed at understanding the impact of conflicting facial and vocal emotional expressions. Specifically we explored three levels of emotional valence (unhappy, neutral, and happy) expressed in both visual (facial) and aural (vocal) forms. We also investigate three levels of head scales (down-scaled, accurate, and up-scaled) to evaluate whether head scale affects user interpretation of the conveyed emotion. We find significant effects of different multimodal expressions on happiness and trust perception, while no significant effect was observed for head scales. Evidence from our results suggest that facial expressions have a stronger impact than vocal expressions. Additionally, as the difference between the two expressions increase, the less predictable the multimodal expression becomes. For example, for the happy-looking and happy-sounding multimodal expression, we expect and see high happiness rating and high trust, however if one of the two expressions change, this mismatch makes the expression less predictable. We discuss the relationships, implications, and guidelines for social applications that aim to leverage multimodal social cues.more » « less
-
In this paper, the authors explore different approaches to animating 3D facial emotions, some of which use manual keyframe animation and some of which use machine learning. To compare approaches the authors conducted an experiment consisting of side-by-side comparisons of animation clips generated by skeleton, blendshape, audio-driven, and vision-based capture facial animation techniques. Ninety-five participants viewed twenty face animation clips of characters expressing five distinct emotions (anger, sadness, happiness, fear, neutral), which were created using the four different facial animation techniques. After viewing each clip, the participants were asked to identify the emotions that the characters appeared to be conveying and rate their naturalness. Findings showed that the naturalness ratings of the happy emotion produced by the four methods tended to be consistent, whereas the naturalness ratings of the fear emotion created with skeletal animation were significantly higher than the other methods. Recognition of sad and neutral emotions were very low for all methods as compared to the other emotions. Overall, the skeleton approach had significantly higher ratings for naturalness and higher recognition rate than the other methods.more » « less
An official website of the United States government

