skip to main content


Title: Faster Indentation Influences Skin Deformation To Reduce Tactile Discriminability of Compliant Objects
To discriminate the compliance of soft objects, we rely upon spatiotemporal cues in the mechanical deformation of the skin. However, we have few direct observations of skin deformation over time, in particular how its response differs with indentation velocities and depths, and thereby helps inform our perceptual judgments. To help fill this gap, we develop a 3D stereo imaging method to observe contact of the skin’s surface with transparent, compliant stimuli. Experiments with human-subjects, in passive touch, are conducted with stimuli varying in compliance, indentation depth, velocity, and time duration. The results indicate that contact durations greater than 0.4 s are perceptually discriminable. Moreover, compliant pairs delivered at higher velocities are more difficult to discriminate because they induce smaller differences in deformation. In a detailed quantification of the skin’s surface deformation, we find that several, independent cues aid perception. In particular, the rate of change of gross contact area best correlates with discriminability, across indentation velocities and compliances. However, cues associated with skin surface curvature and bulk force are also predictive, for stimuli more and less compliant than skin, respectively. These findings and detailed measurements seek to inform the design of haptic interfaces.  more » « less
Award ID(s):
1908115
NSF-PAR ID:
10475026
Author(s) / Creator(s):
; ;
Publisher / Repository:
NSF-PAR
Date Published:
Journal Name:
IEEE Transactions on Haptics
Volume:
16
Issue:
2
ISSN:
1939-1412
Page Range / eLocation ID:
215 to 227
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We regularly touch soft, compliant fruits and tissues. To help us discriminate them, we rely upon cues embedded in spatial and temporal deformation of finger pad skin. However, we do not yet understand, in touching objects of various compliance, how such patterns evolve over time, and drive perception. Using a 3-D stereo imaging technique in passive touch, we develop metrics for quantifying skin deformation, across compliance, displacement, and time. The metrics map 2D estimates of terminal contact area to 3-D metrics that represent spatial and temporal changes in penetration depth, surface curvature, and force. To do this, clouds of thousands of 3-D points are reduced in dimensionality into stacks of ellipses, to be more readily comparable between participants and trials. To evaluate the robustness of the derived 3-D metrics, human subjects experiments are performed with stimulus pairs varying in compliance and discriminability. The results indicate that metrics such as penetration depth and surface curvature can distinguish compliances earlier, at less displacement. Observed also are distinct modes of skin deformation, for contact with stiffer objects, versus softer objects that approach the skin's compliance. These observations of the skin's deformation may guide the design and control of haptic actuation. 
    more » « less
  2. Abstract

    Individual differences in tactile acuity have been correlated with age, gender and finger size, whereas the role of the skin's stiffness has been underexplored. Using an approach to image the 3‐D deformation of the skin surface during contact with transparent elastic objects, we evaluate a cohort of 40 young participants, who present a diverse range of finger size, skin stiffness and fingerprint ridge breadth. The results indicate that skin stiffness generally correlates with finger size, although individuals with relatively softer skin can better discriminate compliant objects. Analysis of contact at the skin surface reveals that softer skin generates more prominent patterns of deformation, in particular greater rates of change in contact area, which correlate with higher rates of perceptual discrimination of compliance, regardless of finger size. Moreover, upon applying hyaluronic acid to soften individuals’ skin, we observe immediate, marked and systematic changes in skin deformation and consequent improvements in perceptual acuity in differentiating compliance. Together, the combination of 3‐D imaging of the skin surface, biomechanics measurements, multivariate regression and clustering, and psychophysical experiments show that subtle distinctions in skin stiffness modulate the mechanical signalling of touch and shape individual differences in perceptual acuity.Key points

    Although declines in tactile acuity with ageing are a function of multiple factors, for younger people, the current working hypothesis has been that smaller fingers are better at informing perceptual discrimination because of a higher density of neural afferents.

    To decouple relative impacts on tactile acuity of skin properties of finger size, skin stiffness, and fingerprint ridge breadth, we combined 3‐D imaging of skin surface deformation, biomechanical measurements, multivariate regression and clustering, and psychophysics.

    The results indicate that skin stiffness generally correlates with finger size, although it more robustly correlates with and predicts an individual's perceptual acuity.

    In particular, more elastic skin generates higher rates of deformation, which correlate with perceptual discrimination, shown most dramatically by softening each participant's skin with hyaluronic acid.

    In refining the current working hypothesis, we show the skin's stiffness strongly shapes the signalling of touch and modulates individual differences in perceptual acuity.

     
    more » « less
  3. Brushed stimuli are perceived as pleasant when stroked lightly on the skin surface of a touch receiver at certain velocities. While the relationship between brush velocity and pleasantness has been widely replicated, we do not understand how resultant skin movements – e.g., lateral stretch, stick-slip, normal indentation – drive us to form such judgments. In a series of psychophysical experiments, this work modulates skin movements by varying stimulus stiffness and employing various treatments. The stimuli include brushes of three levels of stiffness and an ungloved human finger. The skin’s friction is modulated via non-hazardous chemicals and washing protocols, and the skin’s thickness and lateral movement are modulated by thin sheets of adhesive film. The stimuli are hand-brushed at controlled forces and velocities. Human participants report perceived pleasantness per trial using ratio scaling. The results indicate that a brush’s stiffness influenced pleasantness more than any skin treatment. Surprisingly, varying the skin’s friction did not affect pleasantness. However, the application of a thin elastic film modulated pleasantness. Such barriers, though elastic and only 40 microns thick, inhibit the skin’s tangential movement and disperse normal force. The finding that thin films modulate affective interactions has implications for wearable sensors and actuation devices. 
    more » « less
  4. Individual differences in tactile acuity are observed within and between age cohorts. Such differences in acuity may be attributed to various sources, including aspects of nervous system, skin mechanics, finger size, cognitive and behavioral factors, etc. This work considers individual differences, within a younger cohort of participants, in discriminating compliant surfaces. These participants exhibit a range of finger size and stiffness. Interestingly, both their finger size and stiffness well predict their discriminative performance, where softer/smaller fingers outperform stiffer/larger fingers. Stereo imaging captured biomechanical cues in the skin’s deformation, including contact area and penetration depth, and their change rates. In those individuals with stiffer/larger fingers, who perceptually performed worse, we observed less distinguishable contact areas and eccentricities, compared to softer/smaller fingers. These particular cues well predicted individual differences observed in perceptual discrimination. In comparison, with two other cues, curvature and penetration depth, the imaging readily distinguished the compliant surfaces irrespective of finger stiffness/size, not aligned with discrimination. In conclusion, in passive touch, we find that individuals with softer/smaller fingers were better at discriminating compliances, and that certain skin deformation cues predict individual differences in perception. 
    more » « less
  5. Garcia Aznar, Jose Manuel (Ed.)
    Human skin enables interaction with diverse materials every day and at all times. The ability to grasp objects, feel textures, and perceive the environment depends on the mechanical behavior, complex structure, and microscale topography of human skin. At the same time, abrasive interactions, such as sometimes occur with prostheses or textiles, can damage the skin and impair its function. Previous theoretical and computational efforts have shown that skin’s surface topography or microrelief is crucial for its tribological behavior. However, current understanding is limited to adult surface profiles and simplified two-dimensional simulations. Yet, the skin has a rich set of features in three dimensions, and the geometry of skin is known to change with aging. Here we create a numerical model of a dynamic indentation test to elucidate the effect of changes in microscale topography with aging on the skin’s response under indentation and sliding contact with a spherical indenter. We create three different microrelief geometries representative of different ages based on experimental reports from the literature. We perform the indentation and sliding steps, and calculate the normal and tangential forces on the indenter as it moves in three distinct directions based on the characteristic skin lines. The model also evaluates the effect of varying the material parameters. Our results show that the microscale topography of the skin in three dimensions, together with the mechanical behavior of the skin layers, lead to distinctive trends on the stress and strain distribution. The major finding is the increasing role of anisotropy which emerges from the geometric changes seen with aging. 
    more » « less