We report on scalable heterointegration of superconducting electrodes and epitaxial semiconductor quantum dots (QDs) on strong piezoelectric and optically nonlinear lithium niobate. The implemented processes combine the sputterdeposited thin film superconductor niobium nitride and III–V compound semiconductor membranes onto the host substrate. The superconducting thin film is employed as a zeroresistivity electrode material for a surface acoustic wave resonator with internal quality factors
Phonons traveling in solidstate devices are emerging as a universal excitation for coupling different physical systems. Phonons at microwave frequencies have a similar wavelength to optical photons in solids, enabling optomechanical microwaveoptical transduction of classical and quantum signals. It becomes conceivable to build optomechanical integrated circuits (OMIC) that guide both photons and phonons and interconnect photonic and phononic devices. Here, we demonstrate an OMIC including an optomechanical ring resonator (OMR), where coresonant infrared photons and GHz phonons induce significantly enhanced interconversion. The platform is hybrid, using wide bandgap semiconductor gallium phosphide (GaP) for waveguiding and piezoelectric zinc oxide (ZnO) for phonon generation. The OMR features photonic and phononic quality factors of >1 × 10^{5}and 3.2 × 10^{3}, respectively. The optomechanical interconversion between photonic modes achieved an internal conversion efficiency
 NSFPAR ID:
 10475076
 Publisher / Repository:
 Nature Publishing Group
 Date Published:
 Journal Name:
 Nature Communications
 Volume:
 14
 Issue:
 1
 ISSN:
 20411723
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract representing a threefold enhancement compared to identical devices with normal conducting electrodes. Superconducting operation of $Q\approx 17000$ resonators is achieved to temperatures $\approx 400\mathrm{M}\mathrm{H}\mathrm{z}$ and electrical radio frequency powers $T>7\mathrm{K}$ . Heterogeneously integrated single QDs couple to the resonant phononic field of the surface acoustic wave resonator operated in the superconducting regime. Position and frequency selective coupling mediated by deformation potential coupling is validated using timeintegrated and timeresolved optical spectroscopy. Furthermore, acoustoelectric charge state control is achieved in a modified device geometry harnessing large piezoelectric fields inside the resonator. The hybrid QD—surface acoustic wave resonator can be scaled to higher operation frequencies and smaller mode volumes for quantum phase modulation and transduction between photons and phonons via the QD. Finally, the employed materials allow for the realization of other types of optoelectronic devices, including superconducting single photon detectors and integrated photonic and phononic circuits. ${P}_{\mathrm{r}\mathrm{f}}>+9\mathrm{d}\mathrm{B}\mathrm{m}$ 
Abstract A study of multiplicity and pseudorapidity distributions of inclusive photons measured in pp and p–Pb collisions at a centerofmass energy per nucleon–nucleon collision of
TeV using the ALICE detector in the forward pseudorapidity region 2.3$$\sqrt{s_{\textrm{NN}}}~=~5.02$$ $\sqrt{{s}_{\text{NN}}}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}5.02$ 3.9 is presented. Measurements in p–Pb collisions are reported for two beam configurations in which the directions of the proton and lead ion beam were reversed. The pseudorapidity distributions in p–Pb collisions are obtained for seven centrality classes which are defined based on different event activity estimators, i.e., the chargedparticle multiplicity measured at midrapidity as well as the energy deposited in a calorimeter at beam rapidity. The inclusive photon multiplicity distributions for both pp and p–Pb collisions are described by double negative binomial distributions. The pseudorapidity distributions of inclusive photons are compared to those of charged particles at midrapidity in pp collisions and for different centrality classes in p–Pb collisions. The results are compared to predictions from various Monte Carlo event generators. None of the generators considered in this paper reproduces the inclusive photon multiplicity distributions in the reported multiplicity range. The pseudorapidity distributions are, however, better described by the same generators.$$<~\eta _\textrm{lab} ~<$$ $<\phantom{\rule{0ex}{0ex}}{\eta}_{\text{lab}}\phantom{\rule{0ex}{0ex}}<$ 
Abstract The azimuthal (
) correlation distributions between heavyflavor decay electrons and associated charged particles are measured in pp and p–Pb collisions at$$\Delta \varphi $$ $\Delta \phi $ TeV. Results are reported for electrons with transverse momentum$$\sqrt{s_{\mathrm{{NN}}}} = 5.02$$ $\sqrt{{s}_{\mathrm{NN}}}=5.02$$$4 $4<{p}_{\text{T}}<16$ and pseudorapidity$$\textrm{GeV}/c$$ $\text{GeV}/c$ . The associated charged particles are selected with transverse momentum$$\eta <0.6$$ $\left\eta \right<0.6$$$1 $1<{p}_{\text{T}}<7$ , and relative pseudorapidity separation with the leading electron$$\textrm{GeV}/c$$ $\text{GeV}/c$ . The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near and awayside peaks, respectively. The results from p–Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The$$\Delta \eta  < 1$$ $\left\Delta \eta \right<1$ distribution and the peak observables in pp and p–Pb collisions are compared with calculations from various Monte Carlo event generators.$$\Delta \varphi $$ $\Delta \phi $ 
Abstract We present a proof of concept for a spectrally selective thermal midIR source based on nanopatterned graphene (NPG) with a typical mobility of CVDgrown graphene (up to 3000
), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{1}\,\hbox {s}^{1}$$ ${\text{cm}}^{2}\phantom{\rule{0ex}{0ex}}{\text{V}}^{1}\phantom{\rule{0ex}{0ex}}{\text{s}}^{1}$inplane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ $\lambda =3$ m by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming stateoftheart pristine graphene light sources operating in the nearinfrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$\upmu$$ $\mu $ W/$$11\times 10^3$$ $11\times {10}^{3}$ at$$\hbox {m}^2$$ ${\text{m}}^{2}$ K for a bias voltage of$$T=2000$$ $T=2000$ V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and deriving the completely general nonlocal fluctuationdissipation theorem with nonlocal response of surface plasmons in the random phase approximation, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13$$V=23$$ $V=23$ m and 150$$\upmu$$ $\mu $ m, respectively, providing the opportunity to create phased arrays made of nanoantennas represented by the holes in NPG. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between$$\upmu$$ $\mu $ and$$12^\circ$$ ${12}^{\circ}$ by tuning the Fermi energy between$$80^\circ$$ ${80}^{\circ}$ eV and$$E_F=1.0$$ ${E}_{F}=1.0$ eV through the gate voltage. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequencydependent. Using finitedifference time domain calculations, coupled mode theory, and RPA, we develop the model of a midIR light source based on NPG, which will pave the way to graphenebased optical midIR communication, midIR color displays, midIR spectroscopy, and virus detection.$$E_F=0.25$$ ${E}_{F}=0.25$ 
Abstract The double differential cross sections of the Drell–Yan lepton pair (
, dielectron or dimuon) production are measured as functions of the invariant mass$$\ell ^+\ell ^$$ ${\ell}^{+}{\ell}^{}$ , transverse momentum$$m_{\ell \ell }$$ ${m}_{\ell \ell}$ , and$$p_{\textrm{T}} (\ell \ell )$$ ${p}_{\text{T}}\left(\ell \ell \right)$ . The$$\varphi ^{*}_{\eta }$$ ${\phi}_{\eta}^{\ast}$ observable, derived from angular measurements of the leptons and highly correlated with$$\varphi ^{*}_{\eta }$$ ${\phi}_{\eta}^{\ast}$ , is used to probe the low$$p_{\textrm{T}} (\ell \ell )$$ ${p}_{\text{T}}\left(\ell \ell \right)$ region in a complementary way. Dilepton masses up to 1$$p_{\textrm{T}} (\ell \ell )$$ ${p}_{\text{T}}\left(\ell \ell \right)$ are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various$$\,\text {Te\hspace{.08em}V}$$ $\phantom{\rule{0ex}{0ex}}\text{Te}\phantom{\rule{0ex}{0ex}}\text{V}$ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3$$m_{\ell \ell }$$ ${m}_{\ell \ell}$ of proton–proton collisions recorded with the CMS detector at the LHC at a centreofmass energy of 13$$\,\text {fb}^{1}$$ $\phantom{\rule{0ex}{0ex}}{\text{fb}}^{1}$ . Measurements are compared with predictions based on perturbative quantum chromodynamics, including softgluon resummation.$$\,\text {Te\hspace{.08em}V}$$ $\phantom{\rule{0ex}{0ex}}\text{Te}\phantom{\rule{0ex}{0ex}}\text{V}$