skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deciphering the protein ubiquitylation system in plants
Abstract Protein ubiquitylation is a post-translational modification (PTM) process that covalently modifies a protein substrate with either mono-ubiquitin moieties or poly-ubiquitin chains often at the lysine residues. In Arabidopsis, bioinformatic predictions have suggested that over 5% of its proteome constitutes the protein ubiquitylation system. Despite advancements in functional genomic studies in plants, only a small fraction of this bioinformatically predicted system has been functionally characterized. To expand our understanding about the regulatory function of protein ubiquitylation to that rivalling several other major systems, such as transcription regulation and epigenetics, I describe the status, issues, and new approaches of protein ubiquitylation studies in plant biology. I summarize the methods utilized in defining the ubiquitylation machinery by bioinformatics, identifying ubiquitylation substrates by proteomics, and characterizing the ubiquitin E3 ligase-substrate pathways by functional genomics. Based on the functional and evolutionary analyses of the F-box gene superfamily, I propose a deleterious duplication model for the large expansion of this family in plant genomes. Given this model, I present new perspectives of future functional genomic studies on the plant ubiquitylation system to focus on core and active groups of ubiquitin E3 ligase genes.  more » « less
Award ID(s):
1750361
PAR ID:
10475089
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Experimental Botany
Volume:
74
Issue:
21
ISSN:
0022-0957
Format(s):
Medium: X Size: p. 6487-6504
Size(s):
p. 6487-6504
Sponsoring Org:
National Science Foundation
More Like this
  1. Protein degradation through the Ubiquitin (Ub)-26S Proteasome System (UPS) is a major gene expression regulatory pathway in plants. In this pathway, the 76-amino acid Ub proteins are covalently linked onto a large array of UPS substrates with the help of three enzymes (E1 activating, E2 conjugating, and E3 ligating enzymes) and direct them for turnover in the 26S proteasome complex. The S-phase Kinase-associated Protein 1 (Skp1), CUL1, F-box (FBX) protein (SCF) complexes have been identified as the largest E3 ligase group in plants due to the dramatic number expansion of the FBX genes in plant genomes. Since it is the FBX proteins that recognize and determine the specificity of SCF substrates, much effort has been done to characterize their genomic, physiological, and biochemical roles in the past two decades of functional genomic studies. However, the sheer size and high sequence diversity of the FBX gene family demands new approaches to uncover unknown functions. In this work, we first identified 82 known FBX members that have been functionally characterized up to date in Arabidopsis thaliana . Through comparing the genomic structure, evolutionary selection, expression patterns, domain compositions, and functional activities between known and unknown FBX gene members, we developed a neural network machine learning approach to predict whether an unknown FBX member is likely functionally active in Arabidopsis, thereby facilitating its future functional characterization. 
    more » « less
  2. Generating new strategies to improve plant performance and yield in crop plants becomes increasingly relevant with ongoing and predicted global climate changes. E3 ligases that function as key regulators within the ubiquitin proteasome pathway often are involved in abiotic stress responses, development, and metabolism in plants. The aim of this research was to transiently downregulate an E3 ligase that uses BTB/POZ-MATH proteins as substrate adaptors in a tissue-specific manner. Interfering with the E3 ligase at the seedling stage and in developing seeds results in increased salt-stress tolerance and elevated fatty acid levels, respectively. This novel approach can help to improve specific traits in crop plants to maintain sustainable agriculture. 
    more » « less
  3. Inducible protein degradation systems are an important but untapped resource for the study of protein function in plant cells. Unlike mutagenesis or transcriptional control, regulated degradation of proteins of interest allows the study of the biological mechanisms of highly dynamic cellular processes involving essential proteins. While systems for targeted protein degradation are available for research and therapeutics in animals, there are currently limited options in plant biology. Targeted protein degradation systems rely on target ubiquitination by E3 ubiquitin ligases. Systems that are available or being developed in plants can be distinguished primarily by the type of E3 ubiquitin ligase involved, including those that utilize Cullin-RING ligases, bacterial novel E3 ligases, and N-end rule pathway E3 ligases, or they can be controlled by proteolysis targeting chimeras. Target protein ubiquitination leads to degradation by the proteasome or targeting to the vacuole, with both pathways being ubiquitous and important for the endogenous control of protein abundance in plants. Targeted proteolysis approaches for plants will likely be an important tool for basic research and to yield novel traits for crop biotechnology. 
    more » « less
  4. Abstract Auxin critically regulates plant growth and development. Auxin-driven transcriptional responses are mediated through the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. ARF protein condensation attenuates ARF activity, resulting in dramatic shifts in the auxin transcriptional landscape. Here, we perform a forward genetics screen for ARF hypercondensation, identifying an F-box protein, which we named AUXIN RESPONSE FACTOR F-BOX1 (AFF1). Functional characterization of SCFAFF1revealed that this E3 ubiquitin ligase directly interacts with ARF19 and ARF7 to regulate their accumulation, condensation, and nucleo-cytoplasmic partitioning. Mutants defective inAFF1display attenuated auxin responsiveness, and developmental defects, suggesting that SCFAFF1-mediated regulation of ARF protein drives aspects of auxin response and plant development. 
    more » « less
  5. Abstract MotivationUbiquitination is widely involved in protein homeostasis and cell signaling. Ubiquitin E3 ligases are critical regulators of ubiquitination that recognize and recruit specific ubiquitination targets for the final rate-limiting step of ubiquitin transfer reactions. Understanding the ubiquitin E3 ligase activities will provide knowledge in the upstream regulator of the ubiquitination pathway and reveal potential mechanisms in biological processes and disease progression. Recent advances in mass spectrometry-based proteomics have enabled deep profiling of ubiquitylome in a quantitative manner. Yet, functional analysis of ubiquitylome dynamics and pathway activity remains challenging. ResultsHere, we developed a UbE3-APA, a computational algorithm and stand-alone python-based software for Ub E3 ligase Activity Profiling Analysis. Combining an integrated annotation database with statistical analysis, UbE3-APA identifies significantly activated or suppressed E3 ligases based on quantitative ubiquitylome proteomics datasets. Benchmarking the software with published quantitative ubiquitylome analysis confirms the genetic manipulation of SPOP enzyme activity through overexpression and mutation. Application of the algorithm in the re-analysis of a large cohort of ubiquitination proteomics study revealed the activation of PARKIN and the co-activation of other E3 ligases in mitochondria depolarization-induced mitophagy process. We further demonstrated the application of the algorithm in the DIA (data-independent acquisition)-based quantitative ubiquitylome analysis. Availability and implementationSource code and binaries are freely available for download at URL: https://github.com/Chenlab-UMN/Ub-E3-ligase-Activity-Profiling-Analysis, implemented in python and supported on Linux and MS Windows. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less