skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Your Diffusion Model is Secretly a Zero-Shot Classifier
The recent wave of large-scale text-to-image diffusion models has dramatically increased our text-based image generation abilities. These models can generate realistic images for a staggering variety of prompts and exhibit impressive compositional generalization abilities. Almost all use cases thus far have solely focused on sampling; however, diffusion models can also provide conditional density estimates, which are useful for tasks beyond image generation. In this paper, we show that the density estimates from large-scale text-to-image diffusion models like Stable Diffusion can be leveraged to perform zero-shot classification without any additional training. Our generative approach to classification, which we call Diffusion Classifier, attains strong results on a variety of benchmarks and outperforms alternative methods of extracting knowledge from diffusion models. Although a gap remains between generative and discriminative approaches on zero-shot recognition tasks, our diffusion-based approach has significantly stronger multimodal compositional reasoning ability than competing discriminative approaches. Finally, we use Diffusion Classifier to extract standard classifiers from class-conditional diffusion models trained on ImageNet. Our models achieve strong classification performance using only weak augmentations and exhibit qualitatively better "effective robustness" to distribution shift. Overall, our results are a step toward using generative over discriminative models for downstream tasks.  more » « less
Award ID(s):
2024594
PAR ID:
10475148
Author(s) / Creator(s):
Publisher / Repository:
ICCV
Date Published:
Journal Name:
ICCV
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability of generative language models (GLMs) to generate text has improved considerably in the last few years, enabling their use for generative data augmentation. In this work, we propose CONDA, an approach to further improve GLM’s ability to generate synthetic data by reformulating data generation as context generation for a given question-answer (QA) pair and leveraging QA datasets for training context generators. Then, we cast downstream tasks into the same question answering format and adapt the fine-tuned context generators to the target task domain. Finally, we use the fine-tuned GLM to generate relevant contexts, which are in turn used as synthetic training data for their corresponding tasks. We perform extensive experiments on multiple classification datasets and demonstrate substantial improvements in performance for both few- and zero-shot settings. Our analysis reveals that QA datasets that require high-level reasoning abilities (e.g., abstractive and common-sense QA datasets) tend to give the best boost in performance in both few-shot and zero-shot settings. 
    more » « less
  2. Language model (LM) prompting—a popular paradigm for solving NLP tasks—has been shown to be susceptible to miscalibration and brittleness to slight prompt variations, caused by its discriminative prompting approach, i.e., predicting the label given the input. To address these issues, we propose Gen-Z—a generative prompting framework for zero-shot text classification. GEN-Z is generative, as it measures the LM likelihood of input text, conditioned on natural language descriptions of labels. The framework is multivariate, as label descriptions allow us to seamlessly integrate additional contextual information about the labels to improve task performance. On various standard classification benchmarks, with six open-source LM families, we show that zero-shot classification with simple contextualization of the data source of the evaluation set consistently outperforms both zero-shot and few-shot baselines while improving robustness to prompt variations. Further, our approach enables personalizing classification in a zero-shot manner by incorporating author, subject, or reader information in the label descriptions. 
    more » « less
  3. Abstract Diffusion generative models have excelled at diverse image generation and reconstruction tasks across fields. A less explored avenue is their application to discriminative tasks involving regression or classification problems. The cornerstone of modern cosmology is the ability to generate predictions for observed astrophysical fields from theory and constrain physical models from observations using these predictions. This work uses a single diffusion generative model to address these interlinked objectives—as a surrogate model or emulator for cold dark matter density fields conditional on input cosmological parameters, and as a parameter inference model that solves the inverse problem of constraining the cosmological parameters of an input field. The model is able to emulate fields with summary statistics consistent with those of the simulated target distribution. We then leverage the approximate likelihood of the diffusion generative model to derive tight constraints on cosmology by using the Hamiltonian Monte Carlo method to sample the posterior on cosmological parameters for a given test image. Finally, we demonstrate that this parameter inference approach is more robust to small perturbations of noise to the field than baseline parameter inference networks. 
    more » « less
  4. Kehtarnavaz, Nasser; Shirvaikar, Mukul V (Ed.)
    Recent diffusion-based generative models employ methods such as one-shot fine-tuning an image diffusion model for video generation. However, this leads to long video generation times and suboptimal efficiency. To resolve this long generation time, zero-shot text-to-video models eliminate the fine-tuning method entirely and can generate novel videos from a text prompt alone. While the zero-shot generation method greatly reduces generation time, many models rely on inefficient cross-frame attention processors, hindering the diffusion model’s utilization for real-time video generation. We address this issue by introducing more efficient attention processors to a video diffusion model. Specifically, we use attention processors (i.e. xFormers, FlashAttention, and HyperAttention) that are highly optimized for efficiency and hardware parallelization. We then apply these processors to a video generator and test with both older diffusion models such as Stable Diffusion 1.5 and newer, high-quality models such as Stable Diffusion XL. Our results show that using efficient attention processors alone can reduce generation time by around 25%, while not resulting in any change in video quality. Combined with the use of higher quality models, this use of efficient attention processors in zero-shot generation presents a substantial efficiency and quality increase, greatly expanding the video diffusion model’s application to real-time video generation. 
    more » « less
  5. Deep generative models have enabled the automated synthesis of high-quality data for diverse applications. However, the most effective generative models are specialized to data from a single domain (e.g., images or text). Real-world applications such as healthcare require multi-modal data from multiple domains (e.g., both images and corresponding text), which are difficult to acquire due to limited availability and privacy concerns and are much harder to synthesize. To tackle this joint synthesis challenge, we propose an End-to-end MultImodal X-ray genERative model (EMIXER) for jointly synthesizing x-ray images and corresponding free-text reports, all conditional on diagnosis labels. EMIXER is an conditional generative adversarial model by 1) generating an image based on a label, 2) encoding the image to a hidden embedding, 3) producing the corresponding text via a hierarchical decoder from the image embedding, and 4) a joint discriminator for assessing both the image and the corresponding text. EMIXER also enables self-supervision to leverage vast amount of unlabeled data. Extensive experiments with real X-ray reports data illustrate how data augmentation using synthesized multimodal samples can improve the performance of a variety of supervised tasks including COVID-19 X-ray classification with very limited samples. The quality of generated images and reports are also confirmed by radiologists. We quantitatively show that EMIXER generated synthetic datasets can augment X-ray image classification, report generation models to achieve 5.94% and 6.9% improvement on models trained only on real data samples. Taken together, our results highlight the promise of state of generative models to advance clinical machine learning. 
    more » « less