skip to main content


This content will become publicly available on November 3, 2024

Title: Bringing physics into the coarse‐grid selection: Approximate diffusion distance/effective resistance measures for network analysis and algebraic multigrid for graph Laplacians and systems of elliptic partial differential equations
Abstract

In a recent paper, the author examined a correlation affinity measure for selecting the coarse degrees of freedom (CDOFs) or coarse nodes (C nodes) in systems of elliptic partial differential equations (PDEs). This measure was applied to a set of relaxed vectors, which exposed the near‐nullspace components of the PDE operator. Selecting the CDOFs using this affinity measure and constructing the interpolation operators using a least‐squares procedure, an algebraic multigrid (AMG) method was developed. However, there are several noted issues with this AMG solver. First, to capture strong anisotropies, a large number of test vectors may be needed; and second, the solver's performance can be sensitive to the initial set of random test vectors. Both issues reflect the sensitive statistical nature of the measure. In this article, we derive several other statistical measures that ameliorate these issues and lead to better AMG performance. These measures are related to a Markov process, which the PDE itself may model. Specifically, the measures are based on the diffusion distance/effective resistance for such process, and hence, these measures incorporate physics into the CDOF selection. Moreover, because the diffusion distance/effective resistance can be used to analyze graph networks, these measures also provide a very economical scheme for analyzing large‐scale networks. In this article, the derivations of these measures are given, and numerical experiments for analyzing networks and for AMG performance on weighted‐graph Laplacians and systems of elliptic boundary‐value problems are presented.

 
more » « less
Award ID(s):
1734727
NSF-PAR ID:
10475183
Author(s) / Creator(s):
Editor(s):
Vassilevski, Panayot
Publisher / Repository:
Numerical Linear Algebra with Applications
Date Published:
Journal Name:
Numerical Linear Algebra with Applications
ISSN:
1070-5325
Subject(s) / Keyword(s):
["auto-correlation","bootstrap multigrid","correlation","diffusion distance","effective resistance","graph\nLaplacians","multigrid","systems of elliptic partial differential equations","variance"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    This article develops an algebraic multigrid (AMG) method for solving systems of elliptic boundary‐value problems. It is well known that multigrid for systems of elliptic equations faces many challenges that do not arise for most scalar equations. These challenges include strong intervariable couplings, multidimensional and possibly large near‐nullspaces, analytically unknown near‐nullspaces, delicate selection of coarse degrees of freedom (CDOFs), and complex construction of intergrid operators. In this article, we consider only the selection of CDOFs and the construction of the interpolation operator. The selection is an extension of the Ruge–Stuben algorithm using a new strength of connection measure taken between nodal degrees of freedom, that is, between all degrees of freedom located at a gridpoint to all degrees of freedom at another gridpoint. This measure is based on a local correlation matrix generated for a set of smoothed test vectors derived from a relaxation‐based procedure. With this measure, selection of the CDOFs is then determined by the number of strongly correlated connections at each node, with the selection processed by a Ruge–Stuben coloring scheme. Having selected the CDOFs, the interpolation operator is constructed using a bootstrap AMG (BAMG) procedure. We apply the BAMG procedure either over the smoothed test vectors to obtain an intervariable interpolation scheme or over the like‐variable components of the smoothed test vectors to obtain an intravariable interpolation scheme. Moreover, comparing the correlation measured between the intravariable couplings with the correlation between all couplings, a mixed intravariable and intervariable interpolation scheme is developed. We further examine an indirect BAMG method that explicitly uses the coefficients of the system operator in constructing the interpolation weights. Finally, based on a weak approximation criterion, we consider a simple scheme to adapt the order of the interpolation (i.e., adapt the caliber or maximum number of coarse‐grid points that a fine‐grid point can interpolate from) over the computational domain.

     
    more » « less
  2. The application of graph Laplacian eigenvectors has been quite popular in the graph signal processing field: one can use them as ingredients to design smooth multiscale basis. Our long-term goal is to study and understand the dual geometry of graph Laplacian eigenvectors. In order to do that, it is necessary to define a certain metric to measure the behavioral differences between each pair of the eigenvectors. Saito (2018) considered the ramified optimal transportation (ROT) cost between the square of the eigenvectors as such a metric. Clonginger and Steinerberger (2018) proposed a way to measure the affinity (or `similarity') between the eigenvectors based on their Hadamard (HAD) product. In this article, we propose a simplified ROT metric that is more computational efficient and introduce two more ways to define the distance between the eigenvectors, i.e., the time-stepping diffusion (TSD) metric and the difference of absolute gradient (DAG) pseudometric. The TSD metric measures the cost of "flattening" the initial graph signal via diffusion process up to certain time, hence it can be viewed as a time-dependent version of the ROT metric. The DAG pseudometric is the l2-distance between the feature vectors derived from the eigenvectors, in particular, the absolute gradients of the eigenvectors. We then compare the performance of ROT, HAD and the two new "metrics: on different kinds of graphs. Finally, we investigate their relationship as well as their pros and cons. Keywords: Graph Laplacian eigenvectors, metrics between orthonormal vectors, dual geometry of graph Laplacian eigenvectors, multiscale basis dictionaries on graphs, heat diffusion on graphs, Wasserstein distance, optimal transport 
    more » « less
  3. null (Ed.)
    Detection of hardware Trojans is vital to ensure the security and trustworthiness of System-on-Chip (SoC) designs. Side-channel analysis is effective for Trojan detection by analyzing various side-channel signatures such as power, current, and delay. In this article, we propose an efficient test generation technique to facilitate side-channel analysis utilizing dynamic current. While early work on current-aware test generation has proposed several promising ideas, there are two major challenges in applying it on large designs: (i) The test generation time grows exponentially with the design complexity, and (ii) it is infeasible to detect Trojans, since the side-channel sensitivity is marginal compared to the noise and process variations. Our proposed work addresses both challenges by effectively exploiting the affinity between the inputs and rare (suspicious) nodes. The basic idea is to quickly find the profitable ordered pairs of test vectors that can maximize side-channel sensitivity. This article makes two important contributions: (i) It proposed an efficient test generation algorithm that can produce the first patterns in the test vectors to maximize activation of suspicious nodes using an SMT solver, and (ii) it developed a genetic-algorithm based test generation technique to produce the second patterns in the test vectors to maximize the switching in the suspicious regions while minimizing the switching in the rest of the design. Our experimental results demonstrate that we can drastically improve both the side-channel sensitivity (62× on average) and time complexity (13× on average) compared to the state-of-the-art test generation techniques. 
    more » « less
  4. Abstract

    In a recent article, one of the authors developed a multigrid technique for coarse‐graining dynamic powergrid models. A key component in this technique is a relaxation‐based coarsening of the graph Laplacian given by the powergrid network and its weighted graph, which is represented by the admittance matrix. In this article, we use this coarsening strategy to develop a multigrid method for solving a static system of nonlinear equations that arises through Ohm's law, the so‐called powerflow equations. These static equations are tightly knitted to the dynamic model in that the full powergrid model is an algebraic‐differential system with the powerflow equations describing the algebraic constraints. We assume that the dynamic model corresponds to a stable operating powergrid, and thus, the powerflow equations are associated with a physically stable system. This stability permits the coarsening of the powerflow equations to be based on an approximate graph Laplacian, which is embedded in the powerflow system. By algebraically constructing a hierarchy of approximate weighted graph Laplacians, a hierarchy of nonlinear powerflow equations immediately becomes apparent. This latter hierarchy can then be used in a full approximation scheme (FAS) framework that leads to a nonlinear solver with generally a larger basin of attraction than Newton's method. Given the algebraic multigrid (AMG) coarsening of the approximate Laplacians, the solver is an AMG‐FAS scheme. Alternatively, using the coarse‐grid nodes and interpolation operators generated for the hierarchy of approximate graph Laplacians, a multiplicative‐correction scheme can be derived. The derivation of both schemes will be presented and analyzed, and numerical examples to demonstrate the performance of these schemes will be given.

     
    more » « less
  5. In social networks, a node’s position is, in and of itself, a form of social capital. Better-positioned members not only benefit from (faster) access to diverse information, but innately have more potential influence on information spread. Structural biases often arise from network formation, and can lead to significant disparities in information access based on position. Further, processes such as link recommendation can exacerbate this inequality by relying on network structure to augment connectivity. In this paper, we argue that one can understand and quantify this social capital through the lens of information flow in the network. In contrast to prior work, we consider the setting where all nodes may be sources of distinct information, and a node’s (dis)advantage takes into account its ability to access all information available on the network, not just that from a single source. We introduce three new measures of advantage (broadcast, influence, and control), which are quantified in terms of position in the network using access signatures – vectors that represent a node’s ability to share information with each other node in the network. We then consider the problem of improving equity by making interventions to increase the access of the least-advantaged nodes. Since all nodes are already sources of information in our model, we argue that edge augmentation is most appropriate for mitigating bias in the network structure, and frame a budgeted intervention problem for maximizing broadcast (minimum pairwise access) over the network. Finally, we propose heuristic strategies for selecting edge augmentations and empirically evaluate their performance on a corpus of real-world social networks. We demonstrate that a small number of interventions can not only significantly increase the broadcast measure of access for the least-advantaged nodes (over 5 times more than random), but also simultaneously improve the minimum influence. Additional analysis shows that edge augmentations targeted at improving minimum pairwise access can also dramatically shrink the gap in advantage between nodes (over ) and reduce disparities between their access signatures. 
    more » « less