In a recent article, one of the authors developed a multigrid technique for coarse‐graining dynamic powergrid models. A key component in this technique is a relaxation‐based coarsening of the graph Laplacian given by the powergrid network and its weighted graph, which is represented by the admittance matrix. In this article, we use this coarsening strategy to develop a multigrid method for solving a static system of nonlinear equations that arises through Ohm's law, the so‐called powerflow equations. These static equations are tightly knitted to the dynamic model in that the full powergrid model is an algebraic‐differential system with the powerflow equations describing the algebraic constraints. We assume that the dynamic model corresponds to a stable operating powergrid, and thus, the powerflow equations are associated with a physically stable system. This stability permits the coarsening of the powerflow equations to be based on an approximate graph Laplacian, which is embedded in the powerflow system. By algebraically constructing a hierarchy of approximate weighted graph Laplacians, a hierarchy of nonlinear powerflow equations immediately becomes apparent. This latter hierarchy can then be used in a full approximation scheme (FAS) framework that leads to a nonlinear solver with generally a larger basin of attraction than Newton's method. Given the algebraic multigrid (AMG) coarsening of the approximate Laplacians, the solver is an AMG‐FAS scheme. Alternatively, using the coarse‐grid nodes and interpolation operators generated for the hierarchy of approximate graph Laplacians, a multiplicative‐correction scheme can be derived. The derivation of both schemes will be presented and analyzed, and numerical examples to demonstrate the performance of these schemes will be given.
This paper presents a method for determining the relevant buses for reduced models of power grid networks described by systems of differential‐algebraic equations and for constructing the coarse‐grain dynamical power grid systems. To determine these buses, time integration of differential equations is not needed, but rather, a stationary system is analyzed. However, unlike stationary‐system approaches that determine only coarse generator buses by approximating the coherency of the generators, the proposed method analyzes the graph Laplacian associated with the admittance matrix. The buses for the reduced model are chosen to ensure that the graph Laplacian of the reduced model is an accurate approximation to the graph Laplacian of the full system. Both load and generator buses can be selected by this procedure since the Laplacian is defined on all the buses. The basis of this proposed approach lies in the close relationship between the synchrony of the system and the spectral properties of this Laplacian, that is, conditions on the spectrum of this Laplacian that almost surely guarantee the synchrony of the system. Thus, assuming that the full system is in synchrony, our strategy is to coarsen the full‐system Laplacian such that the coarse Laplacian possesses good approximation to these spectral conditions. Accurate approximation to these conditions then can better lead to synchronous reduced models. The coarsened Laplacian is defined on coarse degrees of freedom (DOFs), which are associated with the relevant buses to include in the reduced model. To realize this coarse DOF selection, we use multigrid coarsening techniques based on compatible relaxation. Multigrid is the natural choice since it has been extensively used to coarsen Laplacians arising from discretizations of elliptic partial differential equations and is actively being extended to graph Laplacians. With the selection of the buses for the reduced model, the reduced model is completed by constructing the coarse admittance matrix values and other physical parameters using standard power grid techniques or by using the intergrid operators constructed in the coarse DOFs selection process. Unfortunately, the selection of the coarse buses and the coarsening of the admittance matrix and physical parameters are not sufficient by themselves to produce a stable reduced system. To achieve a stable system, system structures of the fine‐grain model must be preserved in the reduced model. We analyze this to develop a multigrid methodology for constructing stable reduced models of power grid systems. Numerical examples are presented to validate this methodology.
more » « less- Award ID(s):
- 1734727
- NSF-PAR ID:
- 10475186
- Publisher / Repository:
- Numerical Linear Algebra with Applications
- Date Published:
- Journal Name:
- Numerical Linear Algebra with Applications
- Volume:
- 25
- Issue:
- 6
- ISSN:
- 1070-5325
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Vassilevski, Panayot (Ed.)
Abstract In a recent paper, the author examined a correlation affinity measure for selecting the coarse degrees of freedom (CDOFs) or coarse nodes (C nodes) in systems of elliptic partial differential equations (PDEs). This measure was applied to a set of relaxed vectors, which exposed the near‐nullspace components of the PDE operator. Selecting the CDOFs using this affinity measure and constructing the interpolation operators using a least‐squares procedure, an algebraic multigrid (AMG) method was developed. However, there are several noted issues with this AMG solver. First, to capture strong anisotropies, a large number of test vectors may be needed; and second, the solver's performance can be sensitive to the initial set of random test vectors. Both issues reflect the sensitive statistical nature of the measure. In this article, we derive several other statistical measures that ameliorate these issues and lead to better AMG performance. These measures are related to a Markov process, which the PDE itself may model. Specifically, the measures are based on the diffusion distance/effective resistance for such process, and hence, these measures incorporate physics into the CDOF selection. Moreover, because the diffusion distance/effective resistance can be used to analyze graph networks, these measures also provide a very economical scheme for analyzing large‐scale networks. In this article, the derivations of these measures are given, and numerical experiments for analyzing networks and for AMG performance on weighted‐graph Laplacians and systems of elliptic boundary‐value problems are presented.
-
Summary This article develops an algebraic multigrid (AMG) method for solving systems of elliptic boundary‐value problems. It is well known that multigrid for systems of elliptic equations faces many challenges that do not arise for most scalar equations. These challenges include strong intervariable couplings, multidimensional and possibly large near‐nullspaces, analytically unknown near‐nullspaces, delicate selection of coarse degrees of freedom (CDOFs), and complex construction of intergrid operators. In this article, we consider only the selection of CDOFs and the construction of the interpolation operator. The selection is an extension of the Ruge–Stuben algorithm using a new strength of connection measure taken between nodal degrees of freedom, that is, between all degrees of freedom located at a gridpoint to all degrees of freedom at another gridpoint. This measure is based on a local correlation matrix generated for a set of smoothed test vectors derived from a relaxation‐based procedure. With this measure, selection of the CDOFs is then determined by the number of strongly correlated connections at each node, with the selection processed by a Ruge–Stuben coloring scheme. Having selected the CDOFs, the interpolation operator is constructed using a bootstrap AMG (BAMG) procedure. We apply the BAMG procedure either over the smoothed test vectors to obtain an intervariable interpolation scheme or over the like‐variable components of the smoothed test vectors to obtain an intravariable interpolation scheme. Moreover, comparing the correlation measured between the intravariable couplings with the correlation between all couplings, a mixed intravariable and intervariable interpolation scheme is developed. We further examine an indirect BAMG method that explicitly uses the coefficients of the system operator in constructing the interpolation weights. Finally, based on a weak approximation criterion, we consider a simple scheme to adapt the order of the interpolation (i.e., adapt the caliber or maximum number of coarse‐grid points that a fine‐grid point can interpolate from) over the computational domain.
-
Abstract The general method of graph coarsening or graph reduction has been a remarkably useful and ubiquitous tool in scientific computing and it is now just starting to have a similar impact in machine learning. The goal of this paper is to take a broad look into coarsening techniques that have been successfully deployed in scientific computing and see how similar principles are finding their way in more recent applications related to machine learning. In scientific computing, coarsening plays a central role in algebraic multigrid methods as well as the related class of multilevel incomplete LU factorizations. In machine learning, graph coarsening goes under various names, e.g., graph downsampling or graph reduction. Its goal in most cases is to replace some original graph by one which has fewer nodes, but whose structure and characteristics are similar to those of the original graph. As will be seen, a common strategy in these methods is to rely on spectral properties to define the coarse graph.
-
We study p -Laplacians and spectral clustering for a recently proposed hypergraph model that incorporates edge-dependent vertex weights (EDVW). These weights can reflect different importance of vertices within a hyperedge, thus conferring the hypergraph model higher expressivity and flexibility. By constructing submodular EDVW-based splitting functions, we convert hypergraphs with EDVW into submodular hypergraphs for which the spectral theory is better developed. In this way, existing concepts and theorems such as p -Laplacians and Cheeger inequalities proposed under the submodular hypergraph setting can be directly extended to hypergraphs with EDVW. For submodular hypergraphs with EDVW-based splitting functions, we propose an efficient algorithm to compute the eigenvector associated with the second smallest eigenvalue of the hypergraph 1-Laplacian. We then utilize this eigenvector to cluster the vertices, achieving higher clustering accuracy than traditional spectral clustering based on the 2-Laplacian. More broadly, the proposed algorithm works for all submodular hypergraphs that are graph reducible. Numerical experiments using real-world data demonstrate the effectiveness of combining spectral clustering based on the 1-Laplacian and EDVW.more » « less