skip to main content


Title: Non-volatile reconfigurable metasurface for free-space phase-only modulation

We demonstrated a nonvolatile electrically reconfigurable metasurface based on low-loss phase-change materials Sb2Se3with phase-only (~0.25π) modulation in the free-space. The tunable metasurface is robust against reversible switching over 1,000 times.

 
more » « less
Award ID(s):
2003509
NSF-PAR ID:
10475220
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
Page Range / eLocation ID:
SM2G.5
Format(s):
Medium: X
Location:
San Jose, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Phase-change materials (PCMs) offer a compelling platform for active metaoptics, owing to their large index contrast and fast yet stable phase transition attributes. Despite recent advances in phase-change metasurfaces, a fully integrable solution that combines pronounced tuning measures, i.e., efficiency, dynamic range, speed, and power consumption, is still elusive. Here, we demonstrate an in situ electrically driven tunable metasurface by harnessing the full potential of a PCM alloy, Ge2Sb2Te5(GST), to realize non-volatile, reversible, multilevel, fast, and remarkable optical modulation in the near-infrared spectral range. Such a reprogrammable platform presents a record eleven-fold change in the reflectance (absolute reflectance contrast reaching 80%), unprecedented quasi-continuous spectral tuning over 250 nm, and switching speed that can potentially reach a few kHz. Our scalable heterostructure architecture capitalizes on the integration of a robust resistive microheater decoupled from an optically smart metasurface enabling good modal overlap with an ultrathin layer of the largest index contrast PCM to sustain high scattering efficiency even after several reversible phase transitions. We further experimentally demonstrate an electrically reconfigurable phase-change gradient metasurface capable of steering an incident light beam into different diffraction orders. This work represents a critical advance towards the development of fully integrable dynamic metasurfaces and their potential for beamforming applications.

     
    more » « less
  2. Abstract

    In this paper, we design a tunable phase-modulated metasurface composed of periodically distributed piezoelectric patches with resonant-type shunt circuits. The electroelastic metasurface can control the wavefront of the lowest antisymmetric mode Lamb wave (A0mode) in a small footprint due to its subwavelength features. The fully coupled electromechanical model is established to study the transmission characteristics of the metasurface unit and validated through numerical and experimental studies. Based on the analysis of the metasurface unit, we first explore the performance of electroelastic metasurface with single-resonant shunts and then extend its capability with multi-resonant shunts. By only tuning the electric loads in the shunt circuits, we utilize the proposed metasurface to accomplish wave deflection and wave focusing ofA0mode Lamb waves at different angles and focal points, respectively. Numerical simulations show that the metasurface with single-resonant shunts can deflect the wavefront of 5 kHz and 6 kHz flexural waves by desired angles with less than2%deviation. In addition, it can be tuned to achieve nearly three times displacement amplification at the designed focal point for a wide range of angles from75to 75. Furthermore, with multi-resonant shunts, the piezoelectric-based metasurface can accomplish anomalous wave control over flexural waves at multiple frequencies (i.e. simultaneously at 5 kHz and 10 kHz), developing new potentials toward a broad range of engineering applications such as demultiplexing various frequency components or guiding and focusing them at different positions.

     
    more » « less
  3. We hereby propose and theoretically investigate a new scheme for simultaneous generation and manipulation of terahertz (THz) waves through difference frequency generation facilitated by a metasurface-assisted nonlinear leaky waveguide antenna. The proposed structure integrates a nonlinear optical waveguide, composed of multiple AlxGa1−xAs layers, with a THz leaky waveguide, wherein a bianisotropic metasurface realizes the radiating aperture. By explicitly utilizing the electric, magnetic, and magnetoelectric coupling responses of the metasurface, we demonstrate that the generated THz wave can be induced as a tightly confined, phase-matched guided mode for efficient generation of the THz wave. Additionally, this approach allows the THz wave to be transformed into a directive beam, radiating at a user-defined leakage rate and direction. Our numerical analyses suggest that THz beams ranging from 2.85 THz to 3.05 THz can be steered from 4to 40, utilizing the inherent beam-steering capabilities of the leaky-waveguide antenna. Within this THz frequency spectrum, the phase matching condition is achieved by adjusting the optical wavelengths between 1.6μmand 1.52μm. In particular, the nonlinear conversion efficiency is 2.9 × 10−5[1/W] at 3 THz.

     
    more » « less
  4. Optical edge detection at the visible and near infrared (VNIR) wavelengths is deployed widely in many areas. Here we demonstrate numerically transmissive VNIR dual band edge imaging with a switchable metasurface. Tunability is enabled by using a low-loss and reversible phase-change material Sb2S3. The metasurface acts simultaneously as a high-pass spatial filter and a tunable spectral filter, giving the system the freedom to switch between two functions. In Function 1 with amorphous Sb2S3, this metasurface operates in the edge detection mode near 575 nm and blocks near infrared (NIR) transmission. In Function 2 with crystalline Sb2S3, the device images edges near 825 nm and blocks visible light images. The switchable Sb2S3metasurfaces allow low cross talk edge imaging of a target without complicated optomechanics.

     
    more » « less
  5. Abstract

    All‐optical control and detection of magnetic states for high‐density recording necessitate nanophotonic approaches to amplify local light intensity below the diffraction limit. Sculpting the near‐field phase and polarization can additionally strengthen magneto‐optical effects that rely on circularly polarized pulses, such as all‐optical helicity‐dependent switching, imaging, and spin‐wave excitation. Here, high‐refractive‐index dielectric nanoantennas illuminated with circularly polarized light resonantly enhance local electric field rotation by more than sixfold within [Pt/Co]Nthin films. Sub‐wavelength arrays of amorphous Si nanodisks, or metasurfaces, patterned on perpendicularly magnetized films support Mie‐type resonances that modulate reflection and transmission dissymmetry by >±2% in experiments. Spatial and spectral interference between dipolar modes, proximity effects, and gain are evaluated by varying disk aspect ratio, metasurface–metal separation, and magnetic film thickness, respectively. Simulated enhancements in magnetic circular birefringence and differential absorption are correlated with amplified local field rotation at electric dipolar modes. Greater achievable amplifications are shown via simulations with single‐crystalline Si metasurfaces exhibiting lower losses, including a 12‐fold strengthened electric field rotation within ferromagnetic layers. The metasurface design rules established here could enable nanoscale localization of all‐optical magnetic switching with lowered laser fluence thresholds, as well as enhanced magneto‐optical responses for light‐assisted reading in spintronic devices.

     
    more » « less