Many observable properties of globular clusters (GCs) provide valuable insights for unveiling the hierarchical assembly of their host galaxy. For the Milky Way (MW) in particular, GCs from different accreted satellite galaxies show distinct chemical, spatial, kinematic, and age distributions. Here we examine such clustering features for model GC populations in simulated galaxies, which are carefully selected to match various observational constraints of the MW assembly. We evaluate several widely used clustering, dimensionality reduction, and supervised classification methods on these model GCs, using 10 properties that are observable in the MW. We can categorize in-situ and ex-situ formed GCs with about 90% accuracy, based solely on their clustering features in these 10 variables. The methods are also effective in distinguishing the last major merger in MW analogs with similar accuracy. Although challenging, we still find it possible to identify one, and only one, additional smaller satellite. We develop a new technique to classify the progenitors of MW GCs by combining several methods and weighting them by the validated accuracy. According to this technique, about 60% of GCs belong to the in-situ group, 20% are associated with the Gaia-Sausage/Enceladus event, and 10% are associated with the Sagittarius dwarf galaxy. The remaining 10% of GCs cannot be reliably associated with any single accretion event.
more »
« less
Catalogue of model star clusters in the Milky Way and M31 galaxies
ABSTRACT Detailed understanding of the formation and evolution of globular clusters (GCs) has been recently advanced through a combination of numerical simulations and analytical models. We employ a state-of-the-art model to create a comprehensive catalogue of simulated clusters in three Milky Way (MW) and three Andromeda (M31) analogue galaxies. Our catalogue aims to connect the chemical and kinematic properties of GCs to the assembly histories of their host galaxies. We apply the model to a selected sample of simulated galaxies that closely match the virial mass, circular velocity profile, and defining assembly events of the MW and M31. The resulting catalogue has been calibrated to successfully reproduce key characteristics of the observed GC systems, including total cluster mass, mass function, metallicity distribution, radial profile, and velocity dispersion. We find that clusters in M31 span a wider range of age and metallicity, relative to the MW, possibly due to M31’s recent major merger. Such a merger also heated up the in-situ GC population to higher orbital energy and introduced a large number of ex-situ clusters at large radii. Understanding the impacts of galaxy mergers and accretion on the GC populations is crucial for uncovering the galaxy assembly histories.
more »
« less
- Award ID(s):
- 1909063
- PAR ID:
- 10475300
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 527
- Issue:
- 2
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 3692-3708
- Size(s):
- p. 3692-3708
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The current generation of galaxy simulations can resolve individual giant molecular clouds, the progenitors of dense star clusters. But the evolutionary fate of these young massive clusters, and whether they can become the old globular clusters (GCs) observed in many galaxies, is determined by a complex interplay of internal dynamical processes and external galactic effects. We present the first star-by-star N-body models of massive (N ∼ 105–107) star clusters formed in a FIRE-2 MHD simulation of a Milky Way-mass galaxy, with the relevant initial conditions and tidal forces extracted from the cosmological simulation. We select 895 (∼30 per cent) of the YMCs with >6 × 104 M⊙ from Grudić et al. 2022 and integrate them to z = 0 using the cluster Monte Carlo code, CMC. This procedure predicts a MW-like system with 148 GCs, predominantly formed during the early, bursty mode of star formation. Our GCs are younger, less massive, and more core-collapsed than clusters in the Milky Way or M31. This results from the assembly history and age-metallicity relationship of the host galaxy: Younger clusters are preferentially born in stronger tidal fields and initially retain fewer stellar-mass black holes, causing them to lose mass faster and reach core collapse sooner than older GCs. Our results suggest that the masses and core/half-light radii of GCs are shaped not only by internal dynamical processes, but also by the specific evolutionary history of their host galaxies. These results emphasize that N-body studies with realistic stellar physics are crucial to understanding the evolution and present-day properties of GC systems.more » « less
-
ABSTRACT Globular clusters (GCs) are old massive star clusters that serve as ‘fossils’ of galaxy formation. The advent of Gaia observatory has enabled detailed kinematics studies of the Galactic GCs and revolutionized our understanding of the connections between GC properties and galaxy assembly. However, lack of kinematic measurements of extragalactic GCs limits the sample size of GC systems that we can fully study. In this work, we present a model for GC formation and evolution, which includes positional and kinematic information of individual GCs by assigning them to particles in the Illustris TNG50-1 simulation based on age and location. We calibrate the three adjustable model parameters using observed properties of the Galactic and extragalactic GC systems, including the distributions of position, systemic velocity, velocity dispersion, anisotropy parameter, orbital actions, and metallicities. We also analyse the properties of GCs from different origins. In outer galaxy, ex situ clusters are more dominant than the clusters formed in situ. This leads to the GC metallicities decreasing outwards due to the increasing abundance of accreted, metal-poor clusters. We also find the ex-situ GCs to have greater velocity dispersions and orbital actions, in agreement with their accretion origin.more » « less
-
ABSTRACT The study of outer halo globular cluster (GC) populations can give insight into galaxy merging, GC accretion, and the origin of GCs. We use archival Subaru Hyper Suprime-Cam (HSC) data in concert with space-based GALEX, IRAC, and Gaia EDR3 data to select candidate GCs in the outer halo of the M81 group for confirmation and future study. We use a small sample of previously discovered GCs to tune our selection criteria, finding that bright already-known GCs in the M81 group have sizes that are typically slightly larger than the Subaru PSF in our fields. In the optical bands, GCs appear to have colours that are only slightly different from stars. The inclusion of archival IRAC data yields dramatic improvements in colour separation, as the long wavelength baseline aids somewhat in the separation from stars and clearly separates GCs from many compact background galaxies. We show that some previously spectroscopically identified GCs in the M81 group are instead foreground stars or background galaxies. GCs close to M82 have radial velocities, suggesting that they fell into the M81 group along with M82. The overall M81 GC luminosity function is similar to the Milky Way and M31. M81’s outer halo GCs are similar to the Milky Way in their metallicities and numbers, and much less numerous than M31’s more metal-rich outer halo GC population. These properties reflect differences in the three galaxies’ merger histories, highlighting the possibility of using outer halo GCs to trace merger history in larger samples of galaxies.more » « less
-
null (Ed.)ABSTRACT Globular clusters (GCs) are often used to estimate the dark matter content of galaxies, especially dwarf galaxies, where other kinematic tracers are lacking. These estimates typically assume spherical symmetry and dynamical equilibrium, assumptions that may not hold for the sparse GC population of dwarfs in galaxy clusters. We use a catalogue of GCs tagged on to the Illustris simulation to study the accuracy of GC-based mass estimates. We focus on galaxies in the stellar mass range 108–1011.8 M⊙ identified in nine simulated Virgo-like clusters. Our results indicate that mass estimates are, on average, accurate in systems with GC numbers NGC ≥ 10 and where the uncertainty of individual GC line-of-sight velocities is smaller than the inferred velocity dispersion, σGC. In cases where NGC ≤ 10, however, biases may result, depending on how σGC is computed. We provide calibrations that may help alleviate these biases in methods widely used in the literature. As an application, we find a number of dwarfs with $$M_{*} \sim 10^{8.5}\, \mathrm{M}_{\odot }$$ – comparable with the ultra-diffuse galaxy NGC 1052-DF2 (DF2), notable for the low σGC of its 10 GCs – that have $$\sigma _{\rm GC} \sim 7\!-\!15\, {\rm km \,s}^{-1}$$. These DF2 analogues correspond to relatively massive systems at their infall time (M200 ∼ 1–3 × 1011 M⊙), which have retained only 3–17 GCs and have been stripped of more than 95 per cent of their dark matter. Our results suggest that extreme tidal mass loss in otherwise normal dwarf galaxies may be a possible formation channel for ultra-diffuse objects such as DF2.more » « less