skip to main content


Title: Cooperative Biocatalysis Enables Assembly of a Prenylated Indole Alkaloid
Abstract

The hapalindole‐type metabolites have garnered significant interest due to their diverse biological activities and unique chemical structures. Recently, the biosynthesis of this family of indole alkaloids has been uncovered and shown to involve a rare biocatalytic Cope rearrangement. Previously, we demonstratedcis‐indole isonitrile C‐3 normal geranylation using FamD2. Thus, we sought to explore further the reaction potential with this substrate and dimethylallyl pyrophosphate (DMAPP) using prenyltransferases and cyclases from the hapalindole biosynthetic pathways. Here, we report a new compound derived from an unexpected biosynthetic Cope rearrangement, which expands further the scope of metabolites generated from cyanobacterial Stig cyclases.

 
more » « less
NSF-PAR ID:
10475305
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Synthesis & Catalysis
Volume:
365
Issue:
24
ISSN:
1615-4150
Format(s):
Medium: X Size: p. 4520-4526
Size(s):
["p. 4520-4526"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Microorganisms are remarkable chemists, with enzymes as their tools for executing multi-step syntheses to yield myriad natural products. Microbial synthetic aptitudes are illustrated by the structurally diverse 2,5-diketopiperazine (DKP) family of bioactive nonribosomal peptide natural products. Nonribosomal peptide synthetases (NRPSs) have long been recognized as catalysts for formation of DKP scaffolds from two amino acid substrates. Cyclodipeptide synthases (CDPSs) are more recently recognized catalysts of DKP assembly, employing two aminoacyl-tRNAs (aa-tRNAs) as substrates. CDPS-encoding genes are typically found in genomic neighbourhoods with genes encoding additional biosynthetic enzymes. These include oxidoreductases, cytochrome P450s, prenyltransferases, methyltransferases, and cyclases, which equip the DKP scaffold with groups that diversify chemical structures and confer biological activity. These tailoring enzymes have been characterized from nine CDPS-containing biosynthetic pathways to date, including four during the last year. In this review, we highlight these nine DKP pathways, emphasizing recently characterized tailoring reactions and connecting new developments to earlier findings. Featured pathways encompass a broad spectrum of chemistry, including the formation of challenging C–C and C–O bonds, regioselective methylation, a unique indole alkaloid DKP prenylation strategy, and unprecedented peptide-nucleobase bond formation. These CDPS-containing pathways also provide intriguing models of metabolic pathway evolution across related and divergent microorganisms, and open doors to synthetic biology approaches for generation of DKP combinatorial libraries. Further, bioinformatics analyses support that much unique genetically encoded DKP tailoring potential remains unexplored, suggesting opportunities for further expansion of Nature's biosynthetic spectrum. Together, recent studies of DKP pathways demonstrate the chemical ingenuity of microorganisms, highlight the wealth of unique enzymology provided by bacterial biosynthetic pathways, and suggest an abundance of untapped biosynthetic potential for future exploration. 
    more » « less
  2. Abstract

    Plants possess myriad defenses against their herbivores, including constitutive and inducible chemical compounds and regrowth strategies known as tolerance. Recent studies have shown that plant tolerance and resistance are positively associated given they are co‐localized in the same molecular pathway, the oxidative pentose phosphate pathway. However, given that both defensive strategies utilize carbon skeletons from a shared resource pool in the oxidative pentose phosphate pathway there are likely costs in maintaining both resistance‐tolerance strategies. Here we investigate fitness costs in maintaining both strategies by utilizing a double knockout ofcyp79B2andcyp79B3, key enzymes in the biosynthetic process of indole glucosinolates, which convert tryptophan to indole‐3‐acetaldoxime (IAOx) and is further used to produce indole glucosinolates. These mutant plants are devoid of any indole glucosinolates thus reducing plant resistance. Results show that knocking out indole glucosinolate production and thus one of the resistance pathways leads to an approximate 94% increase in fitness compensation shifting the undercompensating wild‐type Columbia‐0 to an overcompensating genotype following damage. We discuss the potential mechanistic basis for the observed patterns.

     
    more » « less
  3. SUMMARY

    Phenylpropanoids are specialized metabolites derived from phenylalanine. Glucosinolates are defense compounds derived mainly from methionine and tryptophan in Arabidopsis. It was previously shown that the phenylpropanoid pathway and glucosinolate production are metabolically linked. The accumulation of indole‐3‐acetaldoxime (IAOx), the precursor of tryptophan‐derived glucosinolates, represses phenylpropanoid biosynthesis through accelerated degradation of phenylalanine ammonia lyase (PAL). As PAL functions at the entry point of the phenylpropanoid pathway, which produces indispensable specialized metabolites such as lignin, aldoxime‐mediated phenylpropanoid repression is detrimental to plant survival. Although methionine‐derived glucosinolates in Arabidopsis are abundant, any impact of aliphatic aldoximes (AAOx) derived from aliphatic amino acids such as methionine on phenylpropanoid production remains unclear. Here, we investigate the impact of AAOx accumulation on phenylpropanoid production using Arabidopsis aldoxime mutants,ref2andref5. REF2 and REF5 metabolize aldoximes to respective nitrile oxides redundantly, but with different substrate specificities.ref2andref5mutants have decreased phenylpropanoid contents due to the accumulation of aldoximes. As REF2 and REF5 have high substrate specificity toward AAOx and IAOx, respectively, it was assumed thatref2accumulates AAOx, not IAOx. Our study indicates thatref2accumulates both AAOx and IAOx. Removing IAOx partially restored phenylpropanoid content inref2, but not to the wild‐type level. However, when AAOx biosynthesis was silenced, phenylpropanoid production and PAL activity inref2were completely restored, suggesting an inhibitory effect of AAOx on phenylpropanoid production. Further feeding studies revealed that the abnormal growth phenotype commonly observed in Arabidopsis mutants lacking AAOx production is a consequence of methionine accumulation.

     
    more » « less
  4. Abstract  

    Monoterpene indole alkaloids (MIAs) are a class of natural products comprised of thousands of structurally unique bioactive compounds with significant therapeutic values. Due to difficulties associated with isolation from native plant species and organic synthesis of these structurally complex molecules, microbial production of MIAs using engineered hosts are highly desired. In this work, we report the engineering of fully integrated Saccharomyces cerevisiae strains that allow de novo access to strictosidine, the universal precursor to thousands of MIAs at 30–40 mg/L. The optimization efforts were based on a previously reported yeast strain that is engineered to produce high titers of the monoterpene precursor geraniol through compartmentalization of mevalonate pathway in the mitochondria. Our approaches here included the use of CRISPR-dCas9 interference to identify mitochondria diphosphate transporters that negatively impact the titer of the monoterpene, followed by genetic inactivation; the overexpression of transcriptional regulators that increase cellular respiration and mitochondria biogenesis. Strain construction included the strategic integration of genes encoding both MIA biosynthetic and accessory enzymes into the genome under a variety of constitutive and inducible promoters. Following successful de novo production of strictosidine, complex alkaloids belonging to heteroyohimbine and corynantheine families were reconstituted in the host with introduction of additional downstream enzymes. We demonstrate that the serpentine/alstonine pair can be produced at ∼5 mg/L titer, while corynantheidine, the precursor to mitragynine can be produced at ∼1 mg/L titer. Feeding of halogenated tryptamine led to the biosynthesis of analogs of alkaloids in both families. Collectively, our yeast strain represents an excellent starting point to further engineer biosynthetic bottlenecks in this pathway and to access additional MIAs and analogs through microbial fermentation.

    One Sentence Summary

    An Saccharomyces cerevisiae-based microbial platform was developed for the biosynthesis of monoterpene indole alkaloids, including the universal precursor strictosidine and further modified heteroyohimbine and corynantheidine alkaloids.

     
    more » « less
  5. Animals and fungi produce cholesterol and ergosterol, respectively, while plants produce the phytosterols stigmasterol, campesterol, and β‐sitosterol in various combinations. The recent sequencing of many algal genomes allows the detailed reconstruction of the sterol metabolic pathways. Here, we characterized sterol synthesis in two sequencedChlorellaspp., the free‐livingC. sorokiniana,and symbioticC.variabilisNC64A.Chlamydomonas reinhardtiiwas included as an internal control andCoccomyxa subellipsoideaas a plant‐like outlier. We found that ergosterol was the major sterol produced byChlorellaspp. andC. reinhardtii, whileC. subellipsoideaproduced the three phytosterols found in plants. In silico analysis of theC. variabilisNC64A,C. sorokiniana,andC. subellipsoideagenomes identified 22 homologs of sterol biosynthetic genes fromArabidopsis thaliana, Saccharomyces cerevisiae, andC. reinhardtii. The presence of CAS1, CPI1, and HYD1 in the four algal genomes suggests the higher plant cycloartenol branch for sterol biosynthesis, confirming that algae and fungi use different pathways for ergosterol synthesis. Phylogenetic analysis for 40 oxidosqualene cyclases (OSCs) showed that the nine algal OSCs clustered with the cycloartenol cyclases, rather than the lanosterol cyclases, with the OSC forC. subellipsoideapositioned in between the higher plants and the eight other algae. With regard to whyC. subellipsoideaproduced phytosterols instead of ergosterol, we identified 22 differentially conserved positions whereC. subellipsoideaCAS andA. thalianaCAS1 have one amino acid while the three ergosterol producing algae have another. Together, these results emphasize the position of the unicellular algae as an evolutionary transition point for sterols.

     
    more » « less