skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generation of Amorphous Silica Surfaces with Controlled Roughness
Amorphous silica (a-SiO2) surfaces, when grafted with select metals on the active sites of the functionalized surfaces, can act as useful heterogeneous catalysts. From a molecular modeling perspective, one challenge has been generating a-SiO2 slab models with controllable surface roughness to facilitate the study of the effect of surface morphology on the material properties. Previous computational methods either generate relatively flat surfaces or periodically corrugated surfaces that do not mimic the full range of potential surface roughness of the amorphous silica material. In this work, we present a new method, inspired by the capillary fluctuation theory of interfaces, in which rough silica slabs are generated by cleaving a bulk amorphous sample using a cleaving plane with Fourier components randomly generated from a Gaussian distribution. The width of this Gaussian distribution (and thus the degree of surface roughness) can be tuned by varying the surface roughness parameter α. Using the van Beest, Kramer, and van Santen (BKS) force field, we create a large number of silica slabs using cleaving surfaces of varying roughness (α) and using two different system sizes. These surfaces are then characterized to determine their roughness (mean- squared displacement), density profile, and ring size distribution. This analysis shows a higher concentration of surface defects (under-/overcoordinated atoms and strained rings) as the surface roughness increases. To examine the effect of the roughness on surface reactivity, we re-equilibriate a subset of these slabs using the reactive force field ReaxFF and then expose the slabs to water and observe the formation of surface silanols. We observe that the rougher surfaces exhibit greater silanol concentrations as well as bimodal acidity.  more » « less
Award ID(s):
2117449
PAR ID:
10475326
Author(s) / Creator(s):
;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
The Journal of Physical Chemistry A
Volume:
127
Issue:
46
ISSN:
1089-5639
Page Range / eLocation ID:
9831 to 9841
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background: Surface topography strongly modifies adhesion of hard-material contacts, yet roughness of real surfaces typically exists over many length scales, and it is not clear which of these scales has the strongest effect. Objective: This investigation aims to determine which scales of topography have the strongest effect on macroscopic adhesion. Methods: Adhesion measurements were performed on technology-relevant diamond coatings of varying roughness using spherical ruby probes that are large enough (0.5-mm-diameter) to sample all length scales of topography. For each material, more than 2000 measurements of pull-off force were performed in order to investigate the magnitude and statistical distribution of adhesion. Using sphere-contact models, the roughness-dependent effective values of work of adhesion were measured, ranging from 0.08 to 7.15 mJ/m^2 across the four surfaces. The data was more accurately fit using numerical analysis, where an interaction potential was integrated over the AFM-measured topography of all contacting surfaces. Results: These calculations revealed that consideration of nanometer-scale plasticity in the materials was crucial for a good quantitative fit of the measurements, and the presence of such plasticity was confirmed with AFM measurements of the probe after testing. This analysis enabled the extraction of geometry-independent material parameters; the intrinsic work of adhesion between ruby and diamond was determined to be 46.3 mJ/m^2. The range of adhesion was 5.6 nm, which is longer than is typically assumed for atomic interactions, but is in agreement with other recent investigations. Finally, the numerical analysis was repeated for the same surfaces but this time with different length-scales of roughness included or filtered out. Conclusions: The results demonstrate a critical band of length-scales—between 43 nm and 1.8 µm in lateral size—that has the strongest effect on the total adhesive force for these hard, rough contacts. 
    more » « less
  2. Surface morphology, in addition to hydrophobic and electrostatic effects, can alter how proteins interact with solid surfaces. Understanding the heterogeneous dynamics of protein adsorption on surfaces with varying roughness is experimentally challenging. In this work, we use single-molecule fluorescence microscopy to study the adsorption of α-lactalbumin protein on the glass substrate covered with a self-assembled monolayer (SAM) with varying surface concentrations. Two distinct interaction mechanisms are observed: localized adsorption/desorption and continuous-time random walk (CTRW). We investigate the origin of these two populations by simultaneous single-molecule imaging of substrates with both bare glass and SAM-covered regions. SAM-covered areas of substrates are found to promote CTRW, whereas glass surfaces promote localized motion. Contact angle measurements and atomic force microscopy imaging show that increasing SAM concentration results in both increasing hydrophobicity and surface roughness. These properties lead to two opposing effects: increasing hydrophobicity promotes longer protein flights, but increasing surface roughness suppresses protein dynamics resulting in shorter residence times. Our studies suggest that controlling hydrophobicity and roughness, in addition to electrostatics, as independent parameters could provide a means to tune desirable or undesirable protein interactions with surfaces. 
    more » « less
  3. This is the simulation data set for the manuscript: Arvelo DM, Comer J, Schmit J, Garcia R (2024) Interfacial water is separated from a hydrophobic silica surface by a gap of 1.2 nm. ACS Nano 18:18683–18692. https://doi.org/10.1021/acsnano.4c05689 This data set includes all files needed to run and analyze the simulations described in the this manuscript in the molecular dynamics software NAMD, as well as the output of the simulations. LAMMPS input files for the ReaxFF simulations are also included. The files are organized into directories corresponding to the figures of the main text and supporting information. They include molecular model structure files (NAMD psf or LAMMPS data), force field parameter files (in CHARMM format or ReaxFF format), initial atomic coordinates (pdb format), NAMD or LAMMPS configuration files, Colvars configuration files, NAMD or LAMMPS log files, and output including restart files (in binary NAMD format) and trajectories in dcd format (downsampled with a stride of 100 to 20 ns per frame). Analysis is controlled by shell scripts (Bash-compatible) that call VMD Tcl scripts or python scripts. These scripts and their output are also included. Version: 1.0. Figure5AC: Simulation of pentadecane on a 5 chains/nm^2 OTS layer. Figure5B_FigureS7: Calculation of force profile for an SiO2 tip asperity model using adaptive biasing force. Systems: octane with 5 chains/nm^2 OTS, octane with 4 chains/nm^2 OTS, decane with 5 chains/nm^2 OTS, water with 5 chains/nm^2 OTS. FigureS6: Simulations showing the effect of octadecane on the structure of the OTS layer for 3 and 5 chains/nm^2 densities. FigureS8: Calculation of the adsorption free energy of tetracosane (C24) at the OTS–water interface using ABF. FigureS9: Python script for estimating the critical concentration to form an alkane layer at the OTS–water interface using the mean-field Ising model. FigureS10: ReaxFF simulation and modeling to create the silanol-terminated amorphous silica model of an AFM tip asperity. FigureS11: Molecular dynamics simulations showing spontaneous assembly of twelve or twenty-four tetracosane (C24) molecules at the interface between water and the alkyl groups of an OTS-conjugated silica surface. 
    more » « less
  4. A series of different high κ dielectrics such as HfO2, ZrO2, and Al2O3 thin films were studied as an alternative material for the possible replacement of traditional SiO2. These large areas, as well as conformal dielectrics thin films, were grown by the atomic layer deposition technique on a p-type silicon substrate at two different deposition temperatures (150 and 250 °C). Atomic force microscopic study reveals that the surface of the films is very smooth with a measured rms surface roughness value of less than 0.4 nm in some films. After the deposition of the high κ layer, a top metal electrode was deposited onto it to fabricate metal oxide semiconductor capacitor (MOSCAP) structures. The I–V curve reveals that the sample growth at high temperatures exhibits a high resistance value and lower leakage current densities. Frequency-dependent (100 kHz to 1 MHz) C–V characteristics of the MOSCAPs were studied steadily. Furthermore, we have prepared a metal oxide semiconductor field-effect transistor device with Al-doped ZnO as a channel material, and the electrical characteristic of the device was studied. The effect of growth temperature on the structure, surface morphology, crystallinity, capacitance, and dielectric properties of the high κ dielectrics was thoroughly analyzed through several measurement techniques, such as XRD, atomic force microscopy, semiconductor parameter analysis, and ultraviolet-visible spectroscopy. 
    more » « less
  5. Abstract Friction-generated heat and the subsequent thermal evolution control fault material properties and thus strength during the earthquake cycle. We document evidence for transient, nanoscale fault rheology on a high-gloss, light-reflective hematite fault mirror (FM). The FM cuts specularite with minor quartz from the Pleistocene El Laco Fe-ore deposit, northern Chile. Scanning and transmission electron microscopy data reveal that the FM volume comprises a <50-μm-thick zone of polygonal hematite nanocrystals with spherical silica inclusions, rhombohedral twins, no shape or crystallographic preferred orientation, decreasing grain size away from the FM surface, and FM surface magnetite nanoparticles and Fe2+ suboxides. Sub–5-nm-thick silica films encase hematite grains and connect to amorphous interstitial silica. Observations imply that coseismic shear heating (temperature >1000 °C) generated transiently amorphous, intermixed but immiscible, and rheologically weak Fe-oxide and silica. Hematite regrowth in a fault-perpendicular thermal gradient, sintering, twinning, and a topographic network of nanometer-scale ridges from crystals interlocking across the FM surface collectively restrengthened fault material. Results reveal how temperature-induced weakening preconditions fault healing. Nanoscale transformations may promote subsequent strain delocalization and development of off-fault damage. 
    more » « less