skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Comparison of δ 13 C analyses of individual foraminifer ( Orbulina universa ) shells by secondary ion mass spectrometry and gas source mass spectrometry
Abstract Rationale

The use of secondary ion mass spectrometry (SIMS) to perform micrometer‐scalein situcarbon isotope (δ13C) analyses of shells of marine microfossils called planktic foraminifers holds promise to explore calcification and ecological processes. The potential of this technique, however, cannot be realized without comparison to traditional whole‐shell δ13C values measured by gas source mass spectrometry (GSMS).

Methods

Paired SIMS and GSMS δ13C values measured from final chamber fragments of the same shell of the planktic foraminiferOrbulina universaare compared. The SIMS–GSMS δ13C differences (Δ13CSIMS‐GSMS) were determined via paired analysis of hydrogen peroxide‐cleaned fragments of modern cultured specimens and of fossil specimens from deep‐sea sediments that were either untreated, sonicated, and cleaned with hydrogen peroxide or vacuum roasted. After treatment, fragments were analyzed by a CAMECA IMS 1280 SIMS instrument and either a ThermoScientific MAT‐253 or a Fisons Optima isotope ratio mass spectrometer (GSMS).

Results

Paired analyses of cleaned fragments of cultured specimens (n = 7) yield no SIMS–GSMS δ13C difference. However, paired analyses of untreated (n = 18) and cleaned (n = 12) fragments of fossil shells yield average Δ13CSIMS‐GSMSvalues of 0.8‰ and 0.6‰ (±0.2‰, 2 SE), respectively, while vacuum roasting of fossil shell fragments (n = 11) removes the SIMS–GSMS δ13C difference.

Conclusions

The noted Δ13CSIMS‐GSMSvalues are most likely due to matrix effects causing sample–standard mismatch for SIMS analyses but may also be a combination of other factors such as SIMS measurement of chemically bound water. The volume of material analyzed via SIMS is ~105times smaller than that analyzed by GSMS; hence, the extent to which these Δ13CSIMS‐GSMSvalues represent differences in analyte or instrument factors remains unclear.

 
more » « less
Award ID(s):
2004618
PAR ID:
10475390
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Rapid Communications in Mass Spectrometry
Volume:
38
Issue:
2
ISSN:
0951-4198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction

    Astarte borealisholds great potential as an archive of seasonal paleoclimate, especially due to its long lifespan (several decades to more than a century) and ubiquitous distribution across high northern latitudes. Furthermore, recent work demonstrates that the isotope geochemistry of the aragonite shell is a faithful proxy of environmental conditions. However, the exceedingly slow growth rates ofA. borealisin some locations (<0.2mm/year) make it difficult to achieve seasonal resolution using standard micromilling techniques for conventional stable isotope analysis. Moreover, oxygen isotope (δ18O) records from species inhabiting brackish environments are notoriously difficult to use as paleoclimate archives because of the simultaneous variation in temperature and δ18Owatervalues.

    Methods

    Here we use secondary ion mass spectrometry (SIMS) to microsample anA. borealisspecimen from the southern Baltic Sea, yielding 451 SIMS δ18Oshellvalues at sub-monthly resolution.

    Results

    SIMS δ18Oshellvalues exhibit a quasi-sinusoidal pattern with 24 local maxima and minima coinciding with 24 annual growth increments between March 1977 and the month before specimen collection in May 2001.

    Discussion

    Age-modeled SIMS δ18Oshellvalues correlate significantly with bothin situtemperature measured from shipborne CTD casts (r2 = 0.52, p<0.001) and sea surface temperature from the ORAS5-SST global reanalysis product for the Baltic Sea region (r2 = 0.42, p<0.001). We observe the strongest correlation between SIMS δ18Oshellvalues and salinity when both datasets are run through a 36-month LOWESS function (r2 = 0.71, p < 0.001). Similarly, we find that LOWESS-smoothed SIMS δ18Oshellvalues exhibit a moderate correlation with the LOWESS-smoothed North Atlantic Oscillation (NAO) Index (r2 = 0.46, p<0.001). Change point analysis supports that SIMS δ18Oshellvalues capture a well-documented regime shift in the NAO circa 1989. We hypothesize that the correlation between the SIMS δ18Oshelltime series and the NAO is enhanced by the latter’s influence on the regional covariance of water temperature and δ18Owatervalues on interannual and longer timescales in the Baltic Sea. These results showcase the potential for SIMS δ18Oshellvalues inA. borealisshells to provide robust paleoclimate information regarding hydroclimate variability from seasonal to decadal timescales.

     
    more » « less
  2. Abstract

    A controversial aspect of Pliocene (5.3–2.6 Ma) climate is whether El Niño‐like (El Padre) conditions, characterized by a reduced trans‐equatorial sea‐surface temperature (SST) gradient, prevailed across the Pacific. Evidence for El Padre is chiefly based on reconstructions of sea‐surface conditions derived from the oxygen isotope (δ18O) and Mg/Ca compositions of shells belonging to the planktic foraminiferTrilobatus sacculifer. However, fossil shells of this species are a mixture of multiple carbonate phases—pre‐gametogenic, gametogenic (reproductive), and diagenetic calcites—that formed under different physiological and/or environmental conditions and are averaged in conventional whole‐shell analyses. Through in situ measurements of micrometer‐scale domains within Pliocene‐aged shells ofT. sacculiferfrom Ocean Drilling Program Site 806 in the western equatorial Pacific, we show that the δ18O of gametogenic calcite is 0.6–0.8‰ higher than pre‐gametogenic calcite, while the Mg/Ca ratios of these two phases are the same. Both the whole‐shell and pre‐gametogenic Mg/Ca records indicate that average early Pliocene SSTs were ~1°C warmer than modern, with present‐day SSTs being established during the latest Pliocene and early Pleistocene (~3.0–2.0 Ma). The measurement of multiple calcite phases by whole‐shell δ18O analyses masks a late Pliocene to earliest Pleistocene (3.6–2.2 Ma) decrease in seawater δ18O (δ18Osw) values reconstructed from in situ pre‐gametogenic δ18O and Mg/Ca measurements. Our novel δ18Oswrecord indicates that sea‐surface salinities in the west Pacific warm pool were higher than modern prior to ~3.5 Ma, which is consistent with more arid conditions under an El Padre state.

     
    more » « less
  3. To examine N-isotope ratios (15N/14N) in tissues and shell organic matrix of bivalves as a proxy for natural and anthropogenic nutrient fluxes in coastal environments,Pinctada imbricata,Isognomon alatus, andBrachidontes exustusbivalves were live-collected and analyzed from eight sites in Bocas del Toro, Panama. Sites represent a variety of coastal environments, including more urbanized, uninhabited, riverine, and oceanic sites. Growth under differing environmental conditions is confirmed byδ18O values, with open ocean Escudo de Veraguas shells yielding the highest averageδ18O (−1.0‰) value and freshwater endmember Rio Guarumo the lowest (−1.7‰). At all sites there is no single dominant source of organic matter contributing to bivalveδ15N andδ13C values. Bivalveδ15N andδ13C values likely represent a mixture of mangrove and seagrass N and C, although terrestrial sources cannot be ruled out. Despite hydrographic differences between end-members, we see minimalδ15N andδ13C difference between bivalves from the river-influenced Rio Guarumo site and those from the oceanic Escudo de Veraguas site, with no evidence for N from open-ocean phytoplankton in the latter. Populated sites yield relative15N enrichments suggestive of anthropogenic nutrient input, but lowδ15N values overall make this interpretation equivocal. Lastly,δ15N values of tissue and shell organic matrix correlate significantly for pterioideansP. imbricataandI. alatus. Thus for these species, N isotope studies of historical and fossil shells should provide records of ecology of past environments.

     
    more » « less
  4. Rationale

    It is imperative to understand how chemical preservation alters tissue isotopic compositions before using historical samples in ecological studies. Specifically, although compound‐specific isotope analysis of amino acids (CSIA‐AA) is becoming a widely used tool, there is little information on how preservation techniques affect amino acidδ15N values.

    Methods

    We evaluated the effects of chemical preservatives on bulk tissueδ13C andδ15N and amino acidδ15N values, measured by gas chromatography/isotope ratio mass spectrometry (GC/IRMS), of (a) tuna (Thunnus albacares) and squid (Dosidicus gigas) muscle tissues that were fixed in formaldehyde and stored in ethanol for 2 years and (b) two copepod species,Calanus pacificusandEucalanus californicus, which were preserved in formaldehyde for 24–25 years.

    Results

    Tissues in formaldehyde‐ethanol had higher bulkδ15N values (+1.4,D. gigas; +1.6‰,T. albacares), higherδ13C values forD. gigas(+0.5‰), and lowerδ13C values forT. albacares(−0.8‰) than frozen samples. The bulkδ15N values from copepods were not different those from frozen samples, although theδ13C values from both species were lower (−1.0‰ forE. californicusand −2.2‰ forC. pacificus) than those from frozen samples. The mean amino acidδ15N values from chemically preserved tissues were largely within 1‰ of those of frozen tissues, but the phenylalanineδ15N values were altered to a larger extent (range: 0.5–4.5‰).

    Conclusions

    The effects of preservation on bulkδ13C values were variable, where the direction and magnitude of change varied among taxa. The changes in bulkδ15N values associated with chemical preservation were mostly minimal, suggesting that storage in formaldehyde or ethanol will not affect the interpretation ofδ15N values used in ecological studies. The preservation effects on amino acidδ15N values were also mostly minimal, mirroring bulkδ15N trends, which is promising for future CSIA‐AA studies of archived specimens. However, there were substantial differences in phenylalanine and valineδ15N values, which we speculate resulted from interference in the chromatographic resolution of unknown compounds rather than alteration of tissue isotopic composition due to chemical preservation.

     
    more » « less
  5. Abstract

    The Paleocene‐Eocene Thermal Maximum (PETM; 56 Ma) is considered to be one of the best analogs for future climate change. The carbon isotope composition (δ13C) ofn‐alkanes derived from leaf waxes of terrestrial plants and marine algae can provide important insights into the carbon cycle perturbation during the PETM. Here, we present new organic geochemical data and compound‐specific δ13C data from sediments recovered from an early Cenozoic basin‐margin succession from Spitsbergen. These samples represent one of the most expanded PETM sites and provide new insights into the high Arctic response to the PETM. Our results reveal a synchronous ∼−6.5‰ carbon isotope excursion (CIE) in short‐chainn‐alkanes (nC19; marine algae/bacteria) with a ∼−5‰ CIE in long‐chainn‐alkanes (nC29andnC31; plant waxes) during the peak of the PETM. Although δ13Cn‐alkanesvalues were potentially affected via a modest thermal effect (1‰–2‰), the relative changes in the δ13Cn‐alkanesremain robust. A simple carbon cycle modeling suggests peak carbon emission rate could be ∼3 times faster than previously suggested using δ13CTOCrecords. The CIE magnitude of both δ13Cn‐C19and δ13Cn‐C29can be explained by the elevated influence of13C‐depleted respired CO2in the water column and increased water availability on land, elevatedpCO2in the atmosphere, and changes in vegetation type during the PETM. The synchronous decline in δ13C of both leaf waxes and marine algae/bacteria argues against a significant contribution to the sedimentary organic carbon pool from the weathering delivery of fossiln‐alkanes in the Arctic region.

     
    more » « less